1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>
#include "config.h"
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "hg_sampler.h"
#include "sentence_metadata.h"
#include "scorer.h"
#include "verbose.h"
#include "viterbi.h"
#include "hg.h"
#include "prob.h"
#include "kbest.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"
#include "sampler.h"
using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;
bool invert_score;
boost::shared_ptr<MT19937> rng;
void RandomPermutation(int len, vector<int>* p_ids) {
vector<int>& ids = *p_ids;
ids.resize(len);
for (int i = 0; i < len; ++i) ids[i] = i;
for (int i = len; i > 0; --i) {
int j = rng->next() * i;
if (j == i) i--;
swap(ids[i-1], ids[j]);
}
}
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input_weights,w",po::value<string>(),"Input feature weights file")
("source,i",po::value<string>(),"Source file for development set")
("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data")
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)")
("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles")
("sample_forest,f", "Instead of a k-best list, sample k hypotheses from the decoder's forest")
("sample_forest_unit_weight_vector,x", "Before sampling (must use -f option), rescale the weight vector used so it has unit length; this may improve the quality of the samples")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("decoder_config,c",po::value<string>(),"Decoder configuration file");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || !conf->count("input_weights") || !conf->count("source") || !conf->count("decoder_config") || !conf->count("reference")) {
cerr << dcmdline_options << endl;
return false;
}
return true;
}
static const double kMINUS_EPSILON = -1e-6;
struct HypothesisInfo {
SparseVector<double> features;
double mt_metric;
};
struct GoodBadOracle {
shared_ptr<HypothesisInfo> good;
shared_ptr<HypothesisInfo> bad;
};
struct TrainingObserver : public DecoderObserver {
TrainingObserver(const int k, const DocScorer& d, bool sf, vector<GoodBadOracle>* o) : ds(d), oracles(*o), kbest_size(k), sample_forest(sf) {}
const DocScorer& ds;
vector<GoodBadOracle>& oracles;
shared_ptr<HypothesisInfo> cur_best;
const int kbest_size;
const bool sample_forest;
const HypothesisInfo& GetCurrentBestHypothesis() const {
return *cur_best;
}
virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
UpdateOracles(smeta.GetSentenceID(), *hg);
}
shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) {
shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric = score;
return h;
}
void UpdateOracles(int sent_id, const Hypergraph& forest) {
shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good;
shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad;
cur_bad.reset(); // TODO get rid of??
if (sample_forest) {
vector<WordID> cur_prediction;
ViterbiESentence(forest, &cur_prediction);
float sentscore = ds[sent_id]->ScoreCandidate(cur_prediction)->ComputeScore();
cur_best = MakeHypothesisInfo(ViterbiFeatures(forest), sentscore);
vector<HypergraphSampler::Hypothesis> samples;
HypergraphSampler::sample_hypotheses(forest, kbest_size, &*rng, &samples);
for (unsigned i = 0; i < samples.size(); ++i) {
sentscore = ds[sent_id]->ScoreCandidate(samples[i].words)->ComputeScore();
if (invert_score) sentscore *= -1.0;
if (!cur_good || sentscore > cur_good->mt_metric)
cur_good = MakeHypothesisInfo(samples[i].fmap, sentscore);
if (!cur_bad || sentscore < cur_bad->mt_metric)
cur_bad = MakeHypothesisInfo(samples[i].fmap, sentscore);
}
} else {
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size);
for (int i = 0; i < kbest_size; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore();
if (invert_score) sentscore *= -1.0;
// cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
if (i == 0)
cur_best = MakeHypothesisInfo(d->feature_values, sentscore);
if (!cur_good || sentscore > cur_good->mt_metric)
cur_good = MakeHypothesisInfo(d->feature_values, sentscore);
if (!cur_bad || sentscore < cur_bad->mt_metric)
cur_bad = MakeHypothesisInfo(d->feature_values, sentscore);
}
//cerr << "GOOD: " << cur_good->mt_metric << endl;
//cerr << " CUR: " << cur_best->mt_metric << endl;
//cerr << " BAD: " << cur_bad->mt_metric << endl;
}
}
};
void ReadTrainingCorpus(const string& fname, vector<string>* c) {
ReadFile rf(fname);
istream& in = *rf.stream();
string line;
while(in) {
getline(in, line);
if (!in) break;
c->push_back(line);
}
}
bool ApproxEqual(double a, double b) {
if (a == b) return true;
return (fabs(a-b)/fabs(b)) < 0.000001;
}
int main(int argc, char** argv) {
register_feature_functions();
SetSilent(true); // turn off verbose decoder output
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
const bool sample_forest = conf.count("sample_forest") > 0;
const bool sample_forest_unit_weight_vector = conf.count("sample_forest_unit_weight_vector") > 0;
if (sample_forest_unit_weight_vector && !sample_forest) {
cerr << "Cannot --sample_forest_unit_weight_vector without --sample_forest" << endl;
return 1;
}
vector<string> corpus;
ReadTrainingCorpus(conf["source"].as<string>(), &corpus);
const string metric_name = conf["mt_metric"].as<string>();
ScoreType type = ScoreTypeFromString(metric_name);
if (type == TER) {
invert_score = true;
} else {
invert_score = false;
}
DocScorer ds(type, conf["reference"].as<vector<string> >(), "");
cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl;
if (ds.size() != corpus.size()) {
cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n";
return 1;
}
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
// load initial weights
vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
SparseVector<weight_t> lambdas;
Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights);
Weights::InitSparseVector(dense_weights, &lambdas);
const double max_step_size = conf["max_step_size"].as<double>();
const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
assert(corpus.size() > 0);
vector<GoodBadOracle> oracles(corpus.size());
TrainingObserver observer(conf["k_best_size"].as<int>(), ds, sample_forest, &oracles);
int cur_sent = 0;
int lcount = 0;
int normalizer = 0;
double tot_loss = 0;
int dots = 0;
int cur_pass = 0;
SparseVector<double> tot;
tot += lambdas; // initial weights
normalizer++; // count for initial weights
int max_iteration = conf["passes"].as<int>() * corpus.size();
string msg = "# MIRA tuned weights";
string msga = "# MIRA tuned weights AVERAGED";
vector<int> order;
RandomPermutation(corpus.size(), &order);
while (lcount <= max_iteration) {
lambdas.init_vector(&dense_weights);
if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; }
if (corpus.size() == cur_sent) {
cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n";
Weights::ShowLargestFeatures(dense_weights);
cur_sent = 0;
tot_loss = 0;
dots = 0;
ostringstream os;
os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz";
SparseVector<double> x = tot;
x /= normalizer;
ostringstream sa;
sa << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz";
x.init_vector(&dense_weights);
Weights::WriteToFile(os.str(), dense_weights, true, &msg);
++cur_pass;
RandomPermutation(corpus.size(), &order);
}
if (cur_sent == 0) {
cerr << "PASS " << (lcount / corpus.size() + 1) << endl;
}
decoder.SetId(order[cur_sent]);
double sc = 1.0;
if (sample_forest_unit_weight_vector) {
sc = lambdas.l2norm();
if (sc > 0) {
for (unsigned i = 0; i < dense_weights.size(); ++i)
dense_weights[i] /= sc;
}
}
decoder.Decode(corpus[order[cur_sent]], &observer); // update oracles
if (sc && sc != 1.0) {
for (unsigned i = 0; i < dense_weights.size(); ++i)
dense_weights[i] *= sc;
}
const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis();
const HypothesisInfo& cur_good = *oracles[order[cur_sent]].good;
const HypothesisInfo& cur_bad = *oracles[order[cur_sent]].bad;
tot_loss += cur_hyp.mt_metric;
if (!ApproxEqual(cur_hyp.mt_metric, cur_good.mt_metric)) {
const double loss = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights) +
mt_metric_scale * (cur_good.mt_metric - cur_bad.mt_metric);
//cerr << "LOSS: " << loss << endl;
if (loss > 0.0) {
SparseVector<double> diff = cur_good.features;
diff -= cur_bad.features;
double step_size = loss / diff.l2norm_sq();
//cerr << loss << " " << step_size << " " << diff << endl;
if (step_size > max_step_size) step_size = max_step_size;
lambdas += (cur_good.features * step_size);
lambdas -= (cur_bad.features * step_size);
//cerr << "L: " << lambdas << endl;
}
}
tot += lambdas;
++normalizer;
++lcount;
++cur_sent;
}
cerr << endl;
Weights::WriteToFile("weights.mira-final.gz", dense_weights, true, &msg);
tot /= normalizer;
tot.init_vector(dense_weights);
msg = "# MIRA tuned weights (averaged vector)";
Weights::WriteToFile("weights.mira-final-avg.gz", dense_weights, true, &msg);
cerr << "Optimization complete.\nAVERAGED WEIGHTS: weights.mira-final-avg.gz\n";
return 0;
}
|