1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
#include "search/nbest.hh"
#include "util/pool.hh"
#include <algorithm>
#include <functional>
#include <queue>
#include <assert.h>
#include <math.h>
namespace search {
NBestList::NBestList(std::vector<PartialEdge> &partials, util::Pool &entry_pool, std::size_t keep) {
assert(!partials.empty());
std::vector<PartialEdge>::iterator end;
if (partials.size() > keep) {
end = partials.begin() + keep;
std::nth_element(partials.begin(), end, partials.end(), std::greater<PartialEdge>());
} else {
end = partials.end();
}
for (std::vector<PartialEdge>::const_iterator i(partials.begin()); i != end; ++i) {
queue_.push(QueueEntry(entry_pool.Allocate(QueueEntry::Size(i->GetArity())), *i));
}
}
Score NBestList::TopAfterConstructor() const {
assert(revealed_.empty());
return queue_.top().GetScore();
}
const std::vector<Applied> &NBestList::Extract(util::Pool &pool, std::size_t n) {
while (revealed_.size() < n && !queue_.empty()) {
MoveTop(pool);
}
return revealed_;
}
Score NBestList::Visit(util::Pool &pool, std::size_t index) {
if (index + 1 < revealed_.size())
return revealed_[index + 1].GetScore() - revealed_[index].GetScore();
if (queue_.empty())
return -INFINITY;
if (index + 1 == revealed_.size())
return queue_.top().GetScore() - revealed_[index].GetScore();
assert(index == revealed_.size());
MoveTop(pool);
if (queue_.empty()) return -INFINITY;
return queue_.top().GetScore() - revealed_[index].GetScore();
}
Applied NBestList::Get(util::Pool &pool, std::size_t index) {
assert(index <= revealed_.size());
if (index == revealed_.size()) MoveTop(pool);
return revealed_[index];
}
void NBestList::MoveTop(util::Pool &pool) {
assert(!queue_.empty());
QueueEntry entry(queue_.top());
queue_.pop();
RevealedRef *const children_begin = entry.Children();
RevealedRef *const children_end = children_begin + entry.GetArity();
Score basis = entry.GetScore();
for (RevealedRef *child = children_begin; child != children_end; ++child) {
Score change = child->in_->Visit(pool, child->index_);
if (change != -INFINITY) {
assert(change < 0.001);
QueueEntry new_entry(pool.Allocate(QueueEntry::Size(entry.GetArity())), basis + change, entry.GetArity(), entry.GetNote());
std::copy(children_begin, child, new_entry.Children());
RevealedRef *update = new_entry.Children() + (child - children_begin);
update->in_ = child->in_;
update->index_ = child->index_ + 1;
std::copy(child + 1, children_end, update + 1);
queue_.push(new_entry);
}
// Gesmundo, A. and Henderson, J. Faster Cube Pruning, IWSLT 2010.
if (child->index_) break;
}
// Convert QueueEntry to Applied. This leaves some unused memory.
void *overwrite = entry.Children();
for (unsigned int i = 0; i < entry.GetArity(); ++i) {
RevealedRef from(*(static_cast<const RevealedRef*>(overwrite) + i));
*(static_cast<Applied*>(overwrite) + i) = from.in_->Get(pool, from.index_);
}
revealed_.push_back(Applied(entry.Base()));
}
NBestComplete NBest::Complete(std::vector<PartialEdge> &partials) {
assert(!partials.empty());
NBestList *list = list_pool_.construct(partials, entry_pool_, config_.keep);
return NBestComplete(
list,
partials.front().CompletedState(), // All partials have the same state
list->TopAfterConstructor());
}
const std::vector<Applied> &NBest::Extract(History history) {
return static_cast<NBestList*>(history)->Extract(entry_pool_, config_.size);
}
} // namespace search
|