1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
#include "lm/enumerate_vocab.hh"
#include "lm/model.hh"
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>
#include <ctype.h>
#include <sys/resource.h>
#include <sys/time.h>
float FloatSec(const struct timeval &tv) {
return static_cast<float>(tv.tv_sec) + (static_cast<float>(tv.tv_usec) / 1000000000.0);
}
void PrintUsage(const char *message) {
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage)) {
perror("getrusage");
return;
}
std::cerr << message;
std::cerr << "user\t" << FloatSec(usage.ru_utime) << "\nsys\t" << FloatSec(usage.ru_stime) << '\n';
// Linux doesn't set memory usage :-(.
std::ifstream status("/proc/self/status", std::ios::in);
std::string line;
while (getline(status, line)) {
if (!strncmp(line.c_str(), "VmRSS:\t", 7)) {
std::cerr << "rss " << (line.c_str() + 7) << '\n';
break;
}
}
}
template <class Model> void Query(const Model &model, bool sentence_context) {
PrintUsage("Loading statistics:\n");
typename Model::State state, out;
lm::FullScoreReturn ret;
std::string word;
while (std::cin) {
state = sentence_context ? model.BeginSentenceState() : model.NullContextState();
float total = 0.0;
bool got = false;
unsigned int oov = 0;
while (std::cin >> word) {
got = true;
lm::WordIndex vocab = model.GetVocabulary().Index(word);
if (vocab == 0) ++oov;
ret = model.FullScore(state, vocab, out);
total += ret.prob;
std::cout << word << '=' << vocab << ' ' << static_cast<unsigned int>(ret.ngram_length) << ' ' << ret.prob << '\t';
state = out;
char c;
while (true) {
c = std::cin.get();
if (!std::cin) break;
if (c == '\n') break;
if (!isspace(c)) {
std::cin.unget();
break;
}
}
if (c == '\n') break;
}
if (!got && !std::cin) break;
if (sentence_context) {
ret = model.FullScore(state, model.GetVocabulary().EndSentence(), out);
total += ret.prob;
std::cout << "</s>=" << model.GetVocabulary().EndSentence() << ' ' << static_cast<unsigned int>(ret.ngram_length) << ' ' << ret.prob << '\t';
}
std::cout << "Total: " << total << " OOV: " << oov << '\n';
}
PrintUsage("After queries:\n");
}
template <class Model> void Query(const char *name) {
lm::ngram::Config config;
Model model(name, config);
Query(model);
}
int main(int argc, char *argv[]) {
if (!(argc == 2 || (argc == 3 && !strcmp(argv[2], "null")))) {
std::cerr << "Usage: " << argv[0] << " lm_file [null]" << std::endl;
std::cerr << "Input is wrapped in <s> and </s> unless null is passed." << std::endl;
return 1;
}
bool sentence_context = (argc == 2);
lm::ngram::ModelType model_type;
if (lm::ngram::RecognizeBinary(argv[1], model_type)) {
switch(model_type) {
case lm::ngram::HASH_PROBING:
Query<lm::ngram::ProbingModel>(argv[1], sentence_context);
break;
case lm::ngram::TRIE_SORTED:
Query<lm::ngram::TrieModel>(argv[1], sentence_context);
break;
case lm::ngram::QUANT_TRIE_SORTED:
Query<lm::ngram::QuantTrieModel>(argv[1], sentence_context);
break;
case lm::ngram::ARRAY_TRIE_SORTED:
Query<lm::ngram::ArrayTrieModel>(argv[1], sentence_context);
break;
case lm::ngram::QUANT_ARRAY_TRIE_SORTED:
Query<lm::ngram::QuantArrayTrieModel>(argv[1], sentence_context);
break;
case lm::ngram::HASH_SORTED:
default:
std::cerr << "Unrecognized kenlm model type " << model_type << std::endl;
abort();
}
} else {
Query<lm::ngram::ProbingModel>(argv[1], sentence_context);
}
PrintUsage("Total time including destruction:\n");
return 0;
}
|