1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
#include "lm/model.hh"
#include "lm/blank.hh"
#include "lm/lm_exception.hh"
#include "lm/search_hashed.hh"
#include "lm/search_trie.hh"
#include "lm/read_arpa.hh"
#include "util/have.hh"
#include "util/murmur_hash.hh"
#include <algorithm>
#include <functional>
#include <numeric>
#include <cmath>
#include <limits>
namespace lm {
namespace ngram {
namespace detail {
template <class Search, class VocabularyT> const ModelType GenericModel<Search, VocabularyT>::kModelType = Search::kModelType;
template <class Search, class VocabularyT> uint64_t GenericModel<Search, VocabularyT>::Size(const std::vector<uint64_t> &counts, const Config &config) {
return VocabularyT::Size(counts[0], config) + Search::Size(counts, config);
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::SetupMemory(void *base, const std::vector<uint64_t> &counts, const Config &config) {
size_t goal_size = util::CheckOverflow(Size(counts, config));
uint8_t *start = static_cast<uint8_t*>(base);
size_t allocated = VocabularyT::Size(counts[0], config);
vocab_.SetupMemory(start, allocated, counts[0], config);
start += allocated;
start = search_.SetupMemory(start, counts, config);
if (static_cast<std::size_t>(start - static_cast<uint8_t*>(base)) != goal_size) UTIL_THROW(FormatLoadException, "The data structures took " << (start - static_cast<uint8_t*>(base)) << " but Size says they should take " << goal_size);
}
namespace {
void ComplainAboutARPA(const Config &config, ModelType model_type) {
if (config.write_mmap || !config.messages) return;
if (config.arpa_complain == Config::ALL) {
*config.messages << "Loading the LM will be faster if you build a binary file." << std::endl;
} else if (config.arpa_complain == Config::EXPENSIVE &&
(model_type == TRIE || model_type == QUANT_TRIE || model_type == ARRAY_TRIE || model_type == QUANT_ARRAY_TRIE)) {
*config.messages << "Building " << kModelNames[model_type] << " from ARPA is expensive. Save time by building a binary format." << std::endl;
}
}
void CheckCounts(const std::vector<uint64_t> &counts) {
UTIL_THROW_IF(counts.size() > KENLM_MAX_ORDER, FormatLoadException, "This model has order " << counts.size() << " but KenLM was compiled to support up to " << KENLM_MAX_ORDER << ". " << KENLM_ORDER_MESSAGE);
if (sizeof(uint64_t) > sizeof(std::size_t)) {
for (std::vector<uint64_t>::const_iterator i = counts.begin(); i != counts.end(); ++i) {
UTIL_THROW_IF(*i > static_cast<uint64_t>(std::numeric_limits<size_t>::max()), util::OverflowException, "This model has " << *i << " " << (i - counts.begin() + 1) << "-grams which is too many for 32-bit machines.");
}
}
}
} // namespace
template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::GenericModel(const char *file, const Config &init_config) : backing_(init_config) {
util::scoped_fd fd(util::OpenReadOrThrow(file));
if (IsBinaryFormat(fd.get())) {
Parameters parameters;
int fd_shallow = fd.release();
backing_.InitializeBinary(fd_shallow, kModelType, kVersion, parameters);
CheckCounts(parameters.counts);
Config new_config(init_config);
new_config.probing_multiplier = parameters.fixed.probing_multiplier;
Search::UpdateConfigFromBinary(backing_, parameters.counts, VocabularyT::Size(parameters.counts[0], new_config), new_config);
UTIL_THROW_IF(new_config.enumerate_vocab && !parameters.fixed.has_vocabulary, FormatLoadException, "The decoder requested all the vocabulary strings, but this binary file does not have them. You may need to rebuild the binary file with an updated version of build_binary.");
SetupMemory(backing_.LoadBinary(Size(parameters.counts, new_config)), parameters.counts, new_config);
vocab_.LoadedBinary(parameters.fixed.has_vocabulary, fd_shallow, new_config.enumerate_vocab, backing_.VocabStringReadingOffset());
} else {
ComplainAboutARPA(init_config, kModelType);
InitializeFromARPA(fd.release(), file, init_config);
}
// g++ prints warnings unless these are fully initialized.
State begin_sentence = State();
begin_sentence.length = 1;
begin_sentence.words[0] = vocab_.BeginSentence();
typename Search::Node ignored_node;
bool ignored_independent_left;
uint64_t ignored_extend_left;
begin_sentence.backoff[0] = search_.LookupUnigram(begin_sentence.words[0], ignored_node, ignored_independent_left, ignored_extend_left).Backoff();
State null_context = State();
null_context.length = 0;
P::Init(begin_sentence, null_context, vocab_, search_.Order());
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromARPA(int fd, const char *file, const Config &config) {
// Backing file is the ARPA.
util::FilePiece f(fd, file, config.ProgressMessages());
try {
std::vector<uint64_t> counts;
// File counts do not include pruned trigrams that extend to quadgrams etc. These will be fixed by search_.
ReadARPACounts(f, counts);
CheckCounts(counts);
if (counts.size() < 2) UTIL_THROW(FormatLoadException, "This ngram implementation assumes at least a bigram model.");
if (config.probing_multiplier <= 1.0) UTIL_THROW(ConfigException, "probing multiplier must be > 1.0");
std::size_t vocab_size = util::CheckOverflow(VocabularyT::Size(counts[0], config));
// Setup the binary file for writing the vocab lookup table. The search_ is responsible for growing the binary file to its needs.
vocab_.SetupMemory(backing_.SetupJustVocab(vocab_size, counts.size()), vocab_size, counts[0], config);
if (config.write_mmap && config.include_vocab) {
WriteWordsWrapper wrap(config.enumerate_vocab);
vocab_.ConfigureEnumerate(&wrap, counts[0]);
search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_);
void *vocab_rebase, *search_rebase;
backing_.WriteVocabWords(wrap.Buffer(), vocab_rebase, search_rebase);
// Due to writing at the end of file, mmap may have relocated data. So remap.
vocab_.Relocate(vocab_rebase);
search_.SetupMemory(reinterpret_cast<uint8_t*>(search_rebase), counts, config);
} else {
vocab_.ConfigureEnumerate(config.enumerate_vocab, counts[0]);
search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_);
}
if (!vocab_.SawUnk()) {
assert(config.unknown_missing != THROW_UP);
// Default probabilities for unknown.
search_.UnknownUnigram().backoff = 0.0;
search_.UnknownUnigram().prob = config.unknown_missing_logprob;
}
backing_.FinishFile(config, kModelType, kVersion, counts);
} catch (util::Exception &e) {
e << " Byte: " << f.Offset();
throw;
}
}
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(const State &in_state, const WordIndex new_word, State &out_state) const {
FullScoreReturn ret = ScoreExceptBackoff(in_state.words, in_state.words + in_state.length, new_word, out_state);
for (const float *i = in_state.backoff + ret.ngram_length - 1; i < in_state.backoff + in_state.length; ++i) {
ret.prob += *i;
}
return ret;
}
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
FullScoreReturn ret = ScoreExceptBackoff(context_rbegin, context_rend, new_word, out_state);
// Add the backoff weights for n-grams of order start to (context_rend - context_rbegin).
unsigned char start = ret.ngram_length;
if (context_rend - context_rbegin < static_cast<std::ptrdiff_t>(start)) return ret;
bool independent_left;
uint64_t extend_left;
typename Search::Node node;
if (start <= 1) {
ret.prob += search_.LookupUnigram(*context_rbegin, node, independent_left, extend_left).Backoff();
start = 2;
} else if (!search_.FastMakeNode(context_rbegin, context_rbegin + start - 1, node)) {
return ret;
}
// i is the order of the backoff we're looking for.
unsigned char order_minus_2 = start - 2;
for (const WordIndex *i = context_rbegin + start - 1; i < context_rend; ++i, ++order_minus_2) {
typename Search::MiddlePointer p(search_.LookupMiddle(order_minus_2, *i, node, independent_left, extend_left));
if (!p.Found()) break;
ret.prob += p.Backoff();
}
return ret;
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const {
// Generate a state from context.
context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
if (context_rend == context_rbegin) {
out_state.length = 0;
return;
}
typename Search::Node node;
bool independent_left;
uint64_t extend_left;
out_state.backoff[0] = search_.LookupUnigram(*context_rbegin, node, independent_left, extend_left).Backoff();
out_state.length = HasExtension(out_state.backoff[0]) ? 1 : 0;
float *backoff_out = out_state.backoff + 1;
unsigned char order_minus_2 = 0;
for (const WordIndex *i = context_rbegin + 1; i < context_rend; ++i, ++backoff_out, ++order_minus_2) {
typename Search::MiddlePointer p(search_.LookupMiddle(order_minus_2, *i, node, independent_left, extend_left));
if (!p.Found()) {
std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words);
return;
}
*backoff_out = p.Backoff();
if (HasExtension(*backoff_out)) out_state.length = i - context_rbegin + 1;
}
std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words);
}
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ExtendLeft(
const WordIndex *add_rbegin, const WordIndex *add_rend,
const float *backoff_in,
uint64_t extend_pointer,
unsigned char extend_length,
float *backoff_out,
unsigned char &next_use) const {
FullScoreReturn ret;
typename Search::Node node;
if (extend_length == 1) {
typename Search::UnigramPointer ptr(search_.LookupUnigram(static_cast<WordIndex>(extend_pointer), node, ret.independent_left, ret.extend_left));
ret.rest = ptr.Rest();
ret.prob = ptr.Prob();
assert(!ret.independent_left);
} else {
typename Search::MiddlePointer ptr(search_.Unpack(extend_pointer, extend_length, node));
ret.rest = ptr.Rest();
ret.prob = ptr.Prob();
ret.extend_left = extend_pointer;
// If this function is called, then it does depend on left words.
ret.independent_left = false;
}
float subtract_me = ret.rest;
ret.ngram_length = extend_length;
next_use = extend_length;
ResumeScore(add_rbegin, add_rend, extend_length - 1, node, backoff_out, next_use, ret);
next_use -= extend_length;
// Charge backoffs.
for (const float *b = backoff_in + ret.ngram_length - extend_length; b < backoff_in + (add_rend - add_rbegin); ++b) ret.prob += *b;
ret.prob -= subtract_me;
ret.rest -= subtract_me;
return ret;
}
namespace {
// Do a paraonoid copy of history, assuming new_word has already been copied
// (hence the -1). out_state.length could be zero so I avoided using
// std::copy.
void CopyRemainingHistory(const WordIndex *from, State &out_state) {
WordIndex *out = out_state.words + 1;
const WordIndex *in_end = from + static_cast<ptrdiff_t>(out_state.length) - 1;
for (const WordIndex *in = from; in < in_end; ++in, ++out) *out = *in;
}
} // namespace
/* Ugly optimized function. Produce a score excluding backoff.
* The search goes in increasing order of ngram length.
* Context goes backward, so context_begin is the word immediately preceeding
* new_word.
*/
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ScoreExceptBackoff(
const WordIndex *const context_rbegin,
const WordIndex *const context_rend,
const WordIndex new_word,
State &out_state) const {
assert(new_word < vocab_.Bound());
FullScoreReturn ret;
// ret.ngram_length contains the last known non-blank ngram length.
ret.ngram_length = 1;
typename Search::Node node;
typename Search::UnigramPointer uni(search_.LookupUnigram(new_word, node, ret.independent_left, ret.extend_left));
out_state.backoff[0] = uni.Backoff();
ret.prob = uni.Prob();
ret.rest = uni.Rest();
// This is the length of the context that should be used for continuation to the right.
out_state.length = HasExtension(out_state.backoff[0]) ? 1 : 0;
// We'll write the word anyway since it will probably be used and does no harm being there.
out_state.words[0] = new_word;
if (context_rbegin == context_rend) return ret;
ResumeScore(context_rbegin, context_rend, 0, node, out_state.backoff + 1, out_state.length, ret);
CopyRemainingHistory(context_rbegin, out_state);
return ret;
}
template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::ResumeScore(const WordIndex *hist_iter, const WordIndex *const context_rend, unsigned char order_minus_2, typename Search::Node &node, float *backoff_out, unsigned char &next_use, FullScoreReturn &ret) const {
for (; ; ++order_minus_2, ++hist_iter, ++backoff_out) {
if (hist_iter == context_rend) return;
if (ret.independent_left) return;
if (order_minus_2 == P::Order() - 2) break;
typename Search::MiddlePointer pointer(search_.LookupMiddle(order_minus_2, *hist_iter, node, ret.independent_left, ret.extend_left));
if (!pointer.Found()) return;
*backoff_out = pointer.Backoff();
ret.prob = pointer.Prob();
ret.rest = pointer.Rest();
ret.ngram_length = order_minus_2 + 2;
if (HasExtension(*backoff_out)) {
next_use = ret.ngram_length;
}
}
ret.independent_left = true;
typename Search::LongestPointer longest(search_.LookupLongest(*hist_iter, node));
if (longest.Found()) {
ret.prob = longest.Prob();
ret.rest = ret.prob;
// There is no blank in longest_.
ret.ngram_length = P::Order();
}
}
template <class Search, class VocabularyT> float GenericModel<Search, VocabularyT>::InternalUnRest(const uint64_t *pointers_begin, const uint64_t *pointers_end, unsigned char first_length) const {
float ret;
typename Search::Node node;
if (first_length == 1) {
if (pointers_begin >= pointers_end) return 0.0;
bool independent_left;
uint64_t extend_left;
typename Search::UnigramPointer ptr(search_.LookupUnigram(static_cast<WordIndex>(*pointers_begin), node, independent_left, extend_left));
ret = ptr.Prob() - ptr.Rest();
++first_length;
++pointers_begin;
} else {
ret = 0.0;
}
for (const uint64_t *i = pointers_begin; i < pointers_end; ++i, ++first_length) {
typename Search::MiddlePointer ptr(search_.Unpack(*i, first_length, node));
ret += ptr.Prob() - ptr.Rest();
}
return ret;
}
template class GenericModel<HashedSearch<BackoffValue>, ProbingVocabulary>;
template class GenericModel<HashedSearch<RestValue>, ProbingVocabulary>;
template class GenericModel<trie::TrieSearch<DontQuantize, trie::DontBhiksha>, SortedVocabulary>;
template class GenericModel<trie::TrieSearch<DontQuantize, trie::ArrayBhiksha>, SortedVocabulary>;
template class GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::DontBhiksha>, SortedVocabulary>;
template class GenericModel<trie::TrieSearch<SeparatelyQuantize, trie::ArrayBhiksha>, SortedVocabulary>;
} // namespace detail
base::Model *LoadVirtual(const char *file_name, const Config &config, ModelType model_type) {
RecognizeBinary(file_name, model_type);
switch (model_type) {
case PROBING:
return new ProbingModel(file_name, config);
case REST_PROBING:
return new RestProbingModel(file_name, config);
case TRIE:
return new TrieModel(file_name, config);
case QUANT_TRIE:
return new QuantTrieModel(file_name, config);
case ARRAY_TRIE:
return new ArrayTrieModel(file_name, config);
case QUANT_ARRAY_TRIE:
return new QuantArrayTrieModel(file_name, config);
default:
UTIL_THROW(FormatLoadException, "Confused by model type " << model_type);
}
}
} // namespace ngram
} // namespace lm
|