1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#include "lm/builder/corpus_count.hh"
#include "lm/builder/ngram.hh"
#include "lm/lm_exception.hh"
#include "lm/word_index.hh"
#include "util/fake_ofstream.hh"
#include "util/file.hh"
#include "util/file_piece.hh"
#include "util/murmur_hash.hh"
#include "util/probing_hash_table.hh"
#include "util/scoped.hh"
#include "util/stream/chain.hh"
#include "util/stream/timer.hh"
#include "util/tokenize_piece.hh"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include <functional>
#include <stdint.h>
namespace lm {
namespace builder {
namespace {
#pragma pack(push)
#pragma pack(4)
struct VocabEntry {
typedef uint64_t Key;
uint64_t GetKey() const { return key; }
void SetKey(uint64_t to) { key = to; }
uint64_t key;
lm::WordIndex value;
};
#pragma pack(pop)
const float kProbingMultiplier = 1.5;
class VocabHandout {
public:
static std::size_t MemUsage(WordIndex initial_guess) {
if (initial_guess < 2) initial_guess = 2;
return util::CheckOverflow(Table::Size(initial_guess, kProbingMultiplier));
}
explicit VocabHandout(int fd, WordIndex initial_guess) :
table_backing_(util::CallocOrThrow(MemUsage(initial_guess))),
table_(table_backing_.get(), MemUsage(initial_guess)),
double_cutoff_(std::max<std::size_t>(initial_guess * 1.1, 1)),
word_list_(fd) {
Lookup("<unk>"); // Force 0
Lookup("<s>"); // Force 1
Lookup("</s>"); // Force 2
}
WordIndex Lookup(const StringPiece &word) {
VocabEntry entry;
entry.key = util::MurmurHashNative(word.data(), word.size());
entry.value = table_.SizeNoSerialization();
Table::MutableIterator it;
if (table_.FindOrInsert(entry, it))
return it->value;
word_list_ << word << '\0';
UTIL_THROW_IF(Size() >= std::numeric_limits<lm::WordIndex>::max(), VocabLoadException, "Too many vocabulary words. Change WordIndex to uint64_t in lm/word_index.hh.");
if (Size() >= double_cutoff_) {
table_backing_.call_realloc(table_.DoubleTo());
table_.Double(table_backing_.get());
double_cutoff_ *= 2;
}
return entry.value;
}
WordIndex Size() const {
return table_.SizeNoSerialization();
}
private:
// TODO: factor out a resizable probing hash table.
// TODO: use mremap on linux to get all zeros on resizes.
util::scoped_malloc table_backing_;
typedef util::ProbingHashTable<VocabEntry, util::IdentityHash> Table;
Table table_;
std::size_t double_cutoff_;
util::FakeOFStream word_list_;
};
class DedupeHash : public std::unary_function<const WordIndex *, bool> {
public:
explicit DedupeHash(std::size_t order) : size_(order * sizeof(WordIndex)) {}
std::size_t operator()(const WordIndex *start) const {
return util::MurmurHashNative(start, size_);
}
private:
const std::size_t size_;
};
class DedupeEquals : public std::binary_function<const WordIndex *, const WordIndex *, bool> {
public:
explicit DedupeEquals(std::size_t order) : size_(order * sizeof(WordIndex)) {}
bool operator()(const WordIndex *first, const WordIndex *second) const {
return !memcmp(first, second, size_);
}
private:
const std::size_t size_;
};
struct DedupeEntry {
typedef WordIndex *Key;
Key GetKey() const { return key; }
void SetKey(WordIndex *to) { key = to; }
Key key;
static DedupeEntry Construct(WordIndex *at) {
DedupeEntry ret;
ret.key = at;
return ret;
}
};
typedef util::ProbingHashTable<DedupeEntry, DedupeHash, DedupeEquals> Dedupe;
class Writer {
public:
Writer(std::size_t order, const util::stream::ChainPosition &position, void *dedupe_mem, std::size_t dedupe_mem_size)
: block_(position), gram_(block_->Get(), order),
dedupe_invalid_(order, std::numeric_limits<WordIndex>::max()),
dedupe_(dedupe_mem, dedupe_mem_size, &dedupe_invalid_[0], DedupeHash(order), DedupeEquals(order)),
buffer_(new WordIndex[order - 1]),
block_size_(position.GetChain().BlockSize()) {
dedupe_.Clear();
assert(Dedupe::Size(position.GetChain().BlockSize() / position.GetChain().EntrySize(), kProbingMultiplier) == dedupe_mem_size);
if (order == 1) {
// Add special words. AdjustCounts is responsible if order != 1.
AddUnigramWord(kUNK);
AddUnigramWord(kBOS);
}
}
~Writer() {
block_->SetValidSize(reinterpret_cast<const uint8_t*>(gram_.begin()) - static_cast<const uint8_t*>(block_->Get()));
(++block_).Poison();
}
// Write context with a bunch of <s>
void StartSentence() {
for (WordIndex *i = gram_.begin(); i != gram_.end() - 1; ++i) {
*i = kBOS;
}
}
void Append(WordIndex word) {
*(gram_.end() - 1) = word;
Dedupe::MutableIterator at;
bool found = dedupe_.FindOrInsert(DedupeEntry::Construct(gram_.begin()), at);
if (found) {
// Already present.
NGram already(at->key, gram_.Order());
++(already.Count());
// Shift left by one.
memmove(gram_.begin(), gram_.begin() + 1, sizeof(WordIndex) * (gram_.Order() - 1));
return;
}
// Complete the write.
gram_.Count() = 1;
// Prepare the next n-gram.
if (reinterpret_cast<uint8_t*>(gram_.begin()) + gram_.TotalSize() != static_cast<uint8_t*>(block_->Get()) + block_size_) {
NGram last(gram_);
gram_.NextInMemory();
std::copy(last.begin() + 1, last.end(), gram_.begin());
return;
}
// Block end. Need to store the context in a temporary buffer.
std::copy(gram_.begin() + 1, gram_.end(), buffer_.get());
dedupe_.Clear();
block_->SetValidSize(block_size_);
gram_.ReBase((++block_)->Get());
std::copy(buffer_.get(), buffer_.get() + gram_.Order() - 1, gram_.begin());
}
private:
void AddUnigramWord(WordIndex index) {
*gram_.begin() = index;
gram_.Count() = 0;
gram_.NextInMemory();
if (gram_.Base() == static_cast<uint8_t*>(block_->Get()) + block_size_) {
block_->SetValidSize(block_size_);
gram_.ReBase((++block_)->Get());
}
}
util::stream::Link block_;
NGram gram_;
// This is the memory behind the invalid value in dedupe_.
std::vector<WordIndex> dedupe_invalid_;
// Hash table combiner implementation.
Dedupe dedupe_;
// Small buffer to hold existing ngrams when shifting across a block boundary.
boost::scoped_array<WordIndex> buffer_;
const std::size_t block_size_;
};
} // namespace
float CorpusCount::DedupeMultiplier(std::size_t order) {
return kProbingMultiplier * static_cast<float>(sizeof(DedupeEntry)) / static_cast<float>(NGram::TotalSize(order));
}
std::size_t CorpusCount::VocabUsage(std::size_t vocab_estimate) {
return VocabHandout::MemUsage(vocab_estimate);
}
CorpusCount::CorpusCount(util::FilePiece &from, int vocab_write, uint64_t &token_count, WordIndex &type_count, std::size_t entries_per_block)
: from_(from), vocab_write_(vocab_write), token_count_(token_count), type_count_(type_count),
dedupe_mem_size_(Dedupe::Size(entries_per_block, kProbingMultiplier)),
dedupe_mem_(util::MallocOrThrow(dedupe_mem_size_)) {
}
void CorpusCount::Run(const util::stream::ChainPosition &position) {
UTIL_TIMER("(%w s) Counted n-grams\n");
VocabHandout vocab(vocab_write_, type_count_);
token_count_ = 0;
type_count_ = 0;
const WordIndex end_sentence = vocab.Lookup("</s>");
Writer writer(NGram::OrderFromSize(position.GetChain().EntrySize()), position, dedupe_mem_.get(), dedupe_mem_size_);
uint64_t count = 0;
StringPiece delimiters("\0\t\r ", 4);
try {
while(true) {
StringPiece line(from_.ReadLine());
writer.StartSentence();
for (util::TokenIter<util::AnyCharacter, true> w(line, delimiters); w; ++w) {
WordIndex word = vocab.Lookup(*w);
UTIL_THROW_IF(word <= 2, FormatLoadException, "Special word " << *w << " is not allowed in the corpus. I plan to support models containing <unk> in the future.");
writer.Append(word);
++count;
}
writer.Append(end_sentence);
}
} catch (const util::EndOfFileException &e) {}
token_count_ = count;
type_count_ = vocab.Size();
}
} // namespace builder
} // namespace lm
|