summaryrefslogtreecommitdiff
path: root/klm/lm/binary_format.hh
blob: 72d8c1592617de62bf9c4628084650a129bb76a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#ifndef LM_BINARY_FORMAT__
#define LM_BINARY_FORMAT__

#include "lm/config.hh"
#include "lm/read_arpa.hh"

#include "util/file_piece.hh"
#include "util/mmap.hh"
#include "util/scoped.hh"

#include <cstddef>
#include <vector>

#include <inttypes.h>

namespace lm {
namespace ngram {

typedef enum {HASH_PROBING=0, HASH_SORTED=1, TRIE_SORTED=2} ModelType;

struct FixedWidthParameters {
  unsigned char order;
  float probing_multiplier;
  // What type of model is this?  
  ModelType model_type;
  // Does the end of the file have the actual strings in the vocabulary?   
  bool has_vocabulary;
};

struct Parameters {
  FixedWidthParameters fixed;
  std::vector<uint64_t> counts;
};

struct Backing {
  // File behind memory, if any.  
  util::scoped_fd file;
  // Vocabulary lookup table.  Not to be confused with the vocab words themselves.  
  util::scoped_memory vocab;
  // Raw block of memory backing the language model data structures
  util::scoped_memory search;
};

uint8_t *SetupJustVocab(const Config &config, uint8_t order, std::size_t memory_size, Backing &backing);
// Grow the binary file for the search data structure and set backing.search, returning the memory address where the search data structure should begin.  
uint8_t *GrowForSearch(const Config &config, std::size_t memory_size, Backing &backing);

void FinishFile(const Config &config, ModelType model_type, const std::vector<uint64_t> &counts, Backing &backing);

namespace detail {

bool IsBinaryFormat(int fd);

void ReadHeader(int fd, Parameters &params);

void MatchCheck(ModelType model_type, const Parameters &params);

uint8_t *SetupBinary(const Config &config, const Parameters &params, std::size_t memory_size, Backing &backing);

void ComplainAboutARPA(const Config &config, ModelType model_type);

} // namespace detail

bool RecognizeBinary(const char *file, ModelType &recognized);

template <class To> void LoadLM(const char *file, const Config &config, To &to) {
  Backing &backing = to.MutableBacking();
  backing.file.reset(util::OpenReadOrThrow(file));

  try {
    if (detail::IsBinaryFormat(backing.file.get())) {
      Parameters params;
      detail::ReadHeader(backing.file.get(), params);
      detail::MatchCheck(To::kModelType, params);
      // Replace the run-time configured probing_multiplier with the one in the file.  
      Config new_config(config);
      new_config.probing_multiplier = params.fixed.probing_multiplier;
      std::size_t memory_size = To::Size(params.counts, new_config);
      uint8_t *start = detail::SetupBinary(new_config, params, memory_size, backing);
      to.InitializeFromBinary(start, params, new_config, backing.file.get());
    } else {
      detail::ComplainAboutARPA(config, To::kModelType);
      to.InitializeFromARPA(file, config);
    }
  } catch (util::Exception &e) {
    e << " File: " << file;
    throw;
  }

}

} // namespace ngram
} // namespace lm
#endif // LM_BINARY_FORMAT__