1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
#include "lm/binary_format.hh"
#include "lm/lm_exception.hh"
#include "util/file.hh"
#include "util/file_piece.hh"
#include <cstddef>
#include <cstring>
#include <limits>
#include <string>
#include <stdint.h>
namespace lm {
namespace ngram {
namespace {
const char kMagicBeforeVersion[] = "mmap lm http://kheafield.com/code format version";
const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 5\n\0";
// This must be shorter than kMagicBytes and indicates an incomplete binary file (i.e. build failed).
const char kMagicIncomplete[] = "mmap lm http://kheafield.com/code incomplete\n";
const long int kMagicVersion = 5;
// Old binary files built on 32-bit machines have this header.
// TODO: eliminate with next binary release.
struct OldSanity {
char magic[sizeof(kMagicBytes)];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(OldSanity));
std::memcpy(magic, kMagicBytes, sizeof(magic));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
one_uint64 = 1;
}
};
// Test values aligned to 8 bytes.
struct Sanity {
char magic[ALIGN8(sizeof(kMagicBytes))];
float zero_f, one_f, minus_half_f;
WordIndex one_word_index, max_word_index, padding_to_8;
uint64_t one_uint64;
void SetToReference() {
std::memset(this, 0, sizeof(Sanity));
std::memcpy(magic, kMagicBytes, sizeof(kMagicBytes));
zero_f = 0.0; one_f = 1.0; minus_half_f = -0.5;
one_word_index = 1;
max_word_index = std::numeric_limits<WordIndex>::max();
padding_to_8 = 0;
one_uint64 = 1;
}
};
const char *kModelNames[6] = {"probing hash tables", "probing hash tables with rest costs", "trie", "trie with quantization", "trie with array-compressed pointers", "trie with quantization and array-compressed pointers"};
std::size_t TotalHeaderSize(unsigned char order) {
return ALIGN8(sizeof(Sanity) + sizeof(FixedWidthParameters) + sizeof(uint64_t) * order);
}
void WriteHeader(void *to, const Parameters ¶ms) {
Sanity header = Sanity();
header.SetToReference();
std::memcpy(to, &header, sizeof(Sanity));
char *out = reinterpret_cast<char*>(to) + sizeof(Sanity);
*reinterpret_cast<FixedWidthParameters*>(out) = params.fixed;
out += sizeof(FixedWidthParameters);
uint64_t *counts = reinterpret_cast<uint64_t*>(out);
for (std::size_t i = 0; i < params.counts.size(); ++i) {
counts[i] = params.counts[i];
}
}
} // namespace
uint8_t *SetupJustVocab(const Config &config, uint8_t order, std::size_t memory_size, Backing &backing) {
if (config.write_mmap) {
std::size_t total = TotalHeaderSize(order) + memory_size;
backing.file.reset(util::CreateOrThrow(config.write_mmap));
if (config.write_method == Config::WRITE_MMAP) {
backing.vocab.reset(util::MapZeroedWrite(backing.file.get(), total), total, util::scoped_memory::MMAP_ALLOCATED);
} else {
util::ResizeOrThrow(backing.file.get(), 0);
util::MapAnonymous(total, backing.vocab);
}
strncpy(reinterpret_cast<char*>(backing.vocab.get()), kMagicIncomplete, TotalHeaderSize(order));
return reinterpret_cast<uint8_t*>(backing.vocab.get()) + TotalHeaderSize(order);
} else {
util::MapAnonymous(memory_size, backing.vocab);
return reinterpret_cast<uint8_t*>(backing.vocab.get());
}
}
uint8_t *GrowForSearch(const Config &config, std::size_t vocab_pad, std::size_t memory_size, Backing &backing) {
std::size_t adjusted_vocab = backing.vocab.size() + vocab_pad;
if (config.write_mmap) {
// Grow the file to accomodate the search, using zeros.
try {
util::ResizeOrThrow(backing.file.get(), adjusted_vocab + memory_size);
} catch (util::ErrnoException &e) {
e << " for file " << config.write_mmap;
throw e;
}
if (config.write_method == Config::WRITE_AFTER) {
util::MapAnonymous(memory_size, backing.search);
return reinterpret_cast<uint8_t*>(backing.search.get());
}
// mmap it now.
// We're skipping over the header and vocab for the search space mmap. mmap likes page aligned offsets, so some arithmetic to round the offset down.
std::size_t page_size = util::SizePage();
std::size_t alignment_cruft = adjusted_vocab % page_size;
backing.search.reset(util::MapOrThrow(alignment_cruft + memory_size, true, util::kFileFlags, false, backing.file.get(), adjusted_vocab - alignment_cruft), alignment_cruft + memory_size, util::scoped_memory::MMAP_ALLOCATED);
return reinterpret_cast<uint8_t*>(backing.search.get()) + alignment_cruft;
} else {
util::MapAnonymous(memory_size, backing.search);
return reinterpret_cast<uint8_t*>(backing.search.get());
}
}
void FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts, std::size_t vocab_pad, Backing &backing) {
if (!config.write_mmap) return;
switch (config.write_method) {
case Config::WRITE_MMAP:
util::SyncOrThrow(backing.vocab.get(), backing.vocab.size());
util::SyncOrThrow(backing.search.get(), backing.search.size());
break;
case Config::WRITE_AFTER:
util::SeekOrThrow(backing.file.get(), 0);
util::WriteOrThrow(backing.file.get(), backing.vocab.get(), backing.vocab.size());
util::SeekOrThrow(backing.file.get(), backing.vocab.size() + vocab_pad);
util::WriteOrThrow(backing.file.get(), backing.search.get(), backing.search.size());
util::FSyncOrThrow(backing.file.get());
break;
}
// header and vocab share the same mmap. The header is written here because we know the counts.
Parameters params = Parameters();
params.counts = counts;
params.fixed.order = counts.size();
params.fixed.probing_multiplier = config.probing_multiplier;
params.fixed.model_type = model_type;
params.fixed.has_vocabulary = config.include_vocab;
params.fixed.search_version = search_version;
WriteHeader(backing.vocab.get(), params);
if (config.write_method == Config::WRITE_AFTER) {
util::SeekOrThrow(backing.file.get(), 0);
util::WriteOrThrow(backing.file.get(), backing.vocab.get(), TotalHeaderSize(counts.size()));
}
}
namespace detail {
bool IsBinaryFormat(int fd) {
const uint64_t size = util::SizeFile(fd);
if (size == util::kBadSize || (size <= static_cast<uint64_t>(sizeof(Sanity)))) return false;
// Try reading the header.
util::scoped_memory memory;
try {
util::MapRead(util::LAZY, fd, 0, sizeof(Sanity), memory);
} catch (const util::Exception &e) {
return false;
}
Sanity reference_header = Sanity();
reference_header.SetToReference();
if (!memcmp(memory.get(), &reference_header, sizeof(Sanity))) return true;
if (!memcmp(memory.get(), kMagicIncomplete, strlen(kMagicIncomplete))) {
UTIL_THROW(FormatLoadException, "This binary file did not finish building");
}
if (!memcmp(memory.get(), kMagicBeforeVersion, strlen(kMagicBeforeVersion))) {
char *end_ptr;
const char *begin_version = static_cast<const char*>(memory.get()) + strlen(kMagicBeforeVersion);
long int version = strtol(begin_version, &end_ptr, 10);
if ((end_ptr != begin_version) && version != kMagicVersion) {
UTIL_THROW(FormatLoadException, "Binary file has version " << version << " but this implementation expects version " << kMagicVersion << " so you'll have to use the ARPA to rebuild your binary");
}
OldSanity old_sanity = OldSanity();
old_sanity.SetToReference();
UTIL_THROW_IF(!memcmp(memory.get(), &old_sanity, sizeof(OldSanity)), FormatLoadException, "Looks like this is an old 32-bit format. The old 32-bit format has been removed so that 64-bit and 32-bit files are exchangeable.");
UTIL_THROW(FormatLoadException, "File looks like it should be loaded with mmap, but the test values don't match. Try rebuilding the binary format LM using the same code revision, compiler, and architecture");
}
return false;
}
void ReadHeader(int fd, Parameters &out) {
util::SeekOrThrow(fd, sizeof(Sanity));
util::ReadOrThrow(fd, &out.fixed, sizeof(out.fixed));
if (out.fixed.probing_multiplier < 1.0)
UTIL_THROW(FormatLoadException, "Binary format claims to have a probing multiplier of " << out.fixed.probing_multiplier << " which is < 1.0.");
out.counts.resize(static_cast<std::size_t>(out.fixed.order));
if (out.fixed.order) util::ReadOrThrow(fd, &*out.counts.begin(), sizeof(uint64_t) * out.fixed.order);
}
void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters ¶ms) {
if (params.fixed.model_type != model_type) {
if (static_cast<unsigned int>(params.fixed.model_type) >= (sizeof(kModelNames) / sizeof(const char *)))
UTIL_THROW(FormatLoadException, "The binary file claims to be model type " << static_cast<unsigned int>(params.fixed.model_type) << " but this is not implemented for in this inference code.");
UTIL_THROW(FormatLoadException, "The binary file was built for " << kModelNames[params.fixed.model_type] << " but the inference code is trying to load " << kModelNames[model_type]);
}
UTIL_THROW_IF(search_version != params.fixed.search_version, FormatLoadException, "The binary file has " << kModelNames[params.fixed.model_type] << " version " << params.fixed.search_version << " but this code expects " << kModelNames[params.fixed.model_type] << " version " << search_version);
}
void SeekPastHeader(int fd, const Parameters ¶ms) {
util::SeekOrThrow(fd, TotalHeaderSize(params.counts.size()));
}
uint8_t *SetupBinary(const Config &config, const Parameters ¶ms, uint64_t memory_size, Backing &backing) {
const uint64_t file_size = util::SizeFile(backing.file.get());
// The header is smaller than a page, so we have to map the whole header as well.
std::size_t total_map = util::CheckOverflow(TotalHeaderSize(params.counts.size()) + memory_size);
if (file_size != util::kBadSize && static_cast<uint64_t>(file_size) < total_map)
UTIL_THROW(FormatLoadException, "Binary file has size " << file_size << " but the headers say it should be at least " << total_map);
util::MapRead(config.load_method, backing.file.get(), 0, total_map, backing.search);
if (config.enumerate_vocab && !params.fixed.has_vocabulary)
UTIL_THROW(FormatLoadException, "The decoder requested all the vocabulary strings, but this binary file does not have them. You may need to rebuild the binary file with an updated version of build_binary.");
// Seek to vocabulary words
util::SeekOrThrow(backing.file.get(), total_map);
return reinterpret_cast<uint8_t*>(backing.search.get()) + TotalHeaderSize(params.counts.size());
}
void ComplainAboutARPA(const Config &config, ModelType model_type) {
if (config.write_mmap || !config.messages) return;
if (config.arpa_complain == Config::ALL) {
*config.messages << "Loading the LM will be faster if you build a binary file." << std::endl;
} else if (config.arpa_complain == Config::EXPENSIVE &&
(model_type == TRIE || model_type == QUANT_TRIE || model_type == ARRAY_TRIE || model_type == QUANT_ARRAY_TRIE)) {
*config.messages << "Building " << kModelNames[model_type] << " from ARPA is expensive. Save time by building a binary format." << std::endl;
}
}
} // namespace detail
bool RecognizeBinary(const char *file, ModelType &recognized) {
util::scoped_fd fd(util::OpenReadOrThrow(file));
if (!detail::IsBinaryFormat(fd.get())) return false;
Parameters params;
detail::ReadHeader(fd.get(), params);
recognized = params.fixed.model_type;
return true;
}
} // namespace ngram
} // namespace lm
|