1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
#ifndef _pyp_hh
#define _pyp_hh
#include "slice-sampler.h"
#include <math.h>
#include <map>
#include <tr1/unordered_map>
//#include <google/sparse_hash_map>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random/mersenne_twister.hpp>
#include "log_add.h"
#include "mt19937ar.h"
//
// Pitman-Yor process with customer and table tracking
//
template <typename Dish, typename Hash=std::tr1::hash<Dish> >
class PYP : protected std::tr1::unordered_map<Dish, int, Hash>
//class PYP : protected google::sparse_hash_map<Dish, int, Hash>
{
public:
using std::tr1::unordered_map<Dish,int>::const_iterator;
using std::tr1::unordered_map<Dish,int>::iterator;
using std::tr1::unordered_map<Dish,int>::begin;
using std::tr1::unordered_map<Dish,int>::end;
// using google::sparse_hash_map<Dish,int>::const_iterator;
// using google::sparse_hash_map<Dish,int>::iterator;
// using google::sparse_hash_map<Dish,int>::begin;
// using google::sparse_hash_map<Dish,int>::end;
PYP(double a, double b, unsigned long seed = 0, Hash hash=Hash());
virtual int increment(Dish d, double p0);
virtual int decrement(Dish d);
// lookup functions
int count(Dish d) const;
double prob(Dish dish, double p0) const;
double prob(Dish dish, double dcd, double dca,
double dtd, double dta, double p0) const;
double unnormalised_prob(Dish dish, double p0) const;
int num_customers() const { return _total_customers; }
int num_types() const { return std::tr1::unordered_map<Dish,int>::size(); }
//int num_types() const { return google::sparse_hash_map<Dish,int>::size(); }
bool empty() const { return _total_customers == 0; }
double log_prob(Dish dish, double log_p0) const;
// nb. d* are NOT logs
double log_prob(Dish dish, double dcd, double dca,
double dtd, double dta, double log_p0) const;
int num_tables(Dish dish) const;
int num_tables() const;
double a() const { return _a; }
void set_a(double a) { _a = a; }
double b() const { return _b; }
void set_b(double b) { _b = b; }
virtual void clear();
std::ostream& debug_info(std::ostream& os) const;
double log_restaurant_prob() const;
double log_prior() const;
static double log_prior_a(double a, double beta_a, double beta_b);
static double log_prior_b(double b, double gamma_c, double gamma_s);
template <typename Uniform01>
void resample_prior(Uniform01& rnd);
template <typename Uniform01>
void resample_prior_a(Uniform01& rnd);
template <typename Uniform01>
void resample_prior_b(Uniform01& rnd);
protected:
double _a, _b; // parameters of the Pitman-Yor distribution
double _a_beta_a, _a_beta_b; // parameters of Beta prior on a
double _b_gamma_s, _b_gamma_c; // parameters of Gamma prior on b
struct TableCounter {
TableCounter() : tables(0) {};
int tables;
std::map<int, int> table_histogram; // num customers at table -> number tables
};
typedef std::tr1::unordered_map<Dish, TableCounter, Hash> DishTableType;
//typedef google::sparse_hash_map<Dish, TableCounter, Hash> DishTableType;
DishTableType _dish_tables;
int _total_customers, _total_tables;
typedef boost::mt19937 base_generator_type;
typedef boost::uniform_real<> uni_dist_type;
typedef boost::variate_generator<base_generator_type&, uni_dist_type> gen_type;
// uni_dist_type uni_dist;
// base_generator_type rng; //this gets the seed
// gen_type rnd; //instantiate: rnd(rng, uni_dist)
//call: rnd() generates uniform on [0,1)
// Function objects for calculating the parts of the log_prob for
// the parameters a and b
struct resample_a_type {
int n, m; double b, a_beta_a, a_beta_b;
const DishTableType& dish_tables;
resample_a_type(int n, int m, double b, double a_beta_a,
double a_beta_b, const DishTableType& dish_tables)
: n(n), m(m), b(b), a_beta_a(a_beta_a), a_beta_b(a_beta_b), dish_tables(dish_tables) {}
double operator() (double proposed_a) const {
double log_prior = log_prior_a(proposed_a, a_beta_a, a_beta_b);
double log_prob = 0.0;
double lgamma1a = lgamma(1.0 - proposed_a);
for (typename DishTableType::const_iterator dish_it=dish_tables.begin(); dish_it != dish_tables.end(); ++dish_it)
for (std::map<int, int>::const_iterator table_it=dish_it->second.table_histogram.begin();
table_it !=dish_it->second.table_histogram.end(); ++table_it)
log_prob += (table_it->second * (lgamma(table_it->first - proposed_a) - lgamma1a));
log_prob += (proposed_a == 0.0 ? (m-1.0)*log(b)
: ((m-1.0)*log(proposed_a) + lgamma((m-1.0) + b/proposed_a) - lgamma(b/proposed_a)));
assert(std::isfinite(log_prob));
return log_prob + log_prior;
}
};
struct resample_b_type {
int n, m; double a, b_gamma_c, b_gamma_s;
resample_b_type(int n, int m, double a, double b_gamma_c, double b_gamma_s)
: n(n), m(m), a(a), b_gamma_c(b_gamma_c), b_gamma_s(b_gamma_s) {}
double operator() (double proposed_b) const {
double log_prior = log_prior_b(proposed_b, b_gamma_c, b_gamma_s);
double log_prob = 0.0;
log_prob += (a == 0.0 ? (m-1.0)*log(proposed_b)
: ((m-1.0)*log(a) + lgamma((m-1.0) + proposed_b/a) - lgamma(proposed_b/a)));
log_prob += (lgamma(1.0+proposed_b) - lgamma(n+proposed_b));
return log_prob + log_prior;
}
};
/* lbetadist() returns the log probability density of x under a Beta(alpha,beta)
* distribution. - copied from Mark Johnson's gammadist.c
*/
static long double lbetadist(long double x, long double alpha, long double beta);
/* lgammadist() returns the log probability density of x under a Gamma(alpha,beta)
* distribution - copied from Mark Johnson's gammadist.c
*/
static long double lgammadist(long double x, long double alpha, long double beta);
};
template <typename Dish, typename Hash>
PYP<Dish,Hash>::PYP(double a, double b, unsigned long seed, Hash)
: std::tr1::unordered_map<Dish, int, Hash>(10), _a(a), _b(b),
//: google::sparse_hash_map<Dish, int, Hash>(10), _a(a), _b(b),
_a_beta_a(1), _a_beta_b(1), _b_gamma_s(1), _b_gamma_c(1),
//_a_beta_a(1), _a_beta_b(1), _b_gamma_s(10), _b_gamma_c(0.1),
_total_customers(0), _total_tables(0)//,
//uni_dist(0,1), rng(seed == 0 ? (unsigned long)this : seed), rnd(rng, uni_dist)
{
// std::cerr << "\t##PYP<Dish,Hash>::PYP(a=" << _a << ",b=" << _b << ")" << std::endl;
//set_deleted_key(-std::numeric_limits<Dish>::max());
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::prob(Dish dish, double p0) const
{
int c = count(dish), t = num_tables(dish);
double r = num_tables() * _a + _b;
//std::cerr << "\t\t\t\tPYP<Dish,Hash>::prob(" << dish << "," << p0 << ") c=" << c << " r=" << r << std::endl;
if (c > 0)
return (c - _a * t + r * p0) / (num_customers() + _b);
else
return r * p0 / (num_customers() + _b);
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::unnormalised_prob(Dish dish, double p0) const
{
int c = count(dish), t = num_tables(dish);
double r = num_tables() * _a + _b;
if (c > 0) return (c - _a * t + r * p0);
else return r * p0;
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::prob(Dish dish, double dcd, double dca,
double dtd, double dta, double p0)
const
{
int c = count(dish) + dcd, t = num_tables(dish) + dtd;
double r = (num_tables() + dta) * _a + _b;
if (c > 0)
return (c - _a * t + r * p0) / (num_customers() + dca + _b);
else
return r * p0 / (num_customers() + dca + _b);
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_prob(Dish dish, double log_p0) const
{
using std::log;
int c = count(dish), t = num_tables(dish);
double r = log(num_tables() * _a + b);
if (c > 0)
return Log<double>::add(log(c - _a * t), r + log_p0)
- log(num_customers() + _b);
else
return r + log_p0 - log(num_customers() + b);
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_prob(Dish dish, double dcd, double dca,
double dtd, double dta, double log_p0)
const
{
using std::log;
int c = count(dish) + dcd, t = num_tables(dish) + dtd;
double r = log((num_tables() + dta) * _a + b);
if (c > 0)
return Log<double>::add(log(c - _a * t), r + log_p0)
- log(num_customers() + dca + _b);
else
return r + log_p0 - log(num_customers() + dca + b);
}
template <typename Dish, typename Hash>
int
PYP<Dish,Hash>::increment(Dish dish, double p0) {
int delta = 0;
TableCounter &tc = _dish_tables[dish];
// seated on a new or existing table?
int c = count(dish), t = num_tables(dish), T = num_tables();
double pshare = (c > 0) ? (c - _a*t) : 0.0;
double pnew = (_b + _a*T) * p0;
assert (pshare >= 0.0);
//assert (pnew > 0.0);
//if (rnd() < pnew / (pshare + pnew)) {
if (mt_genrand_res53() < pnew / (pshare + pnew)) {
// assign to a new table
tc.tables += 1;
tc.table_histogram[1] += 1;
_total_tables += 1;
delta = 1;
}
else {
// randomly assign to an existing table
// remove constant denominator from inner loop
//double r = rnd() * (c - _a*t);
double r = mt_genrand_res53() * (c - _a*t);
for (std::map<int,int>::iterator
hit = tc.table_histogram.begin();
hit != tc.table_histogram.end(); ++hit) {
r -= ((hit->first - _a) * hit->second);
if (r <= 0) {
tc.table_histogram[hit->first+1] += 1;
hit->second -= 1;
if (hit->second == 0)
tc.table_histogram.erase(hit);
break;
}
}
if (r > 0) {
std::cerr << r << " " << c << " " << _a << " " << t << std::endl;
assert(false);
}
delta = 0;
}
std::tr1::unordered_map<Dish,int,Hash>::operator[](dish) += 1;
//google::sparse_hash_map<Dish,int,Hash>::operator[](dish) += 1;
_total_customers += 1;
return delta;
}
template <typename Dish, typename Hash>
int
PYP<Dish,Hash>::count(Dish dish) const
{
typename std::tr1::unordered_map<Dish, int>::const_iterator
//typename google::sparse_hash_map<Dish, int>::const_iterator
dcit = find(dish);
if (dcit != end())
return dcit->second;
else
return 0;
}
template <typename Dish, typename Hash>
int
PYP<Dish,Hash>::decrement(Dish dish)
{
typename std::tr1::unordered_map<Dish, int>::iterator dcit = find(dish);
//typename google::sparse_hash_map<Dish, int>::iterator dcit = find(dish);
if (dcit == end()) {
std::cerr << dish << std::endl;
assert(false);
}
int delta = 0;
typename std::tr1::unordered_map<Dish, TableCounter>::iterator dtit = _dish_tables.find(dish);
//typename google::sparse_hash_map<Dish, TableCounter>::iterator dtit = _dish_tables.find(dish);
if (dtit == _dish_tables.end()) {
std::cerr << dish << std::endl;
assert(false);
}
TableCounter &tc = dtit->second;
//std::cerr << "\tdecrement for " << dish << "\n";
//std::cerr << "\tBEFORE histogram: " << tc.table_histogram << " ";
//std::cerr << "count: " << count(dish) << " ";
//std::cerr << "tables: " << tc.tables << "\n";
//double r = rnd() * count(dish);
double r = mt_genrand_res53() * count(dish);
for (std::map<int,int>::iterator hit = tc.table_histogram.begin();
hit != tc.table_histogram.end(); ++hit)
{
//r -= (hit->first - _a) * hit->second;
r -= (hit->first) * hit->second;
if (r <= 0)
{
if (hit->first > 1)
tc.table_histogram[hit->first-1] += 1;
else
{
delta = -1;
tc.tables -= 1;
_total_tables -= 1;
}
hit->second -= 1;
if (hit->second == 0) tc.table_histogram.erase(hit);
break;
}
}
if (r > 0) {
std::cerr << r << " " << count(dish) << " " << _a << " " << num_tables(dish) << std::endl;
assert(false);
}
// remove the customer
dcit->second -= 1;
_total_customers -= 1;
assert(dcit->second >= 0);
if (dcit->second == 0) {
erase(dcit);
_dish_tables.erase(dtit);
//std::cerr << "\tAFTER histogram: Empty\n";
}
else {
//std::cerr << "\tAFTER histogram: " << _dish_tables[dish].table_histogram << " ";
//std::cerr << "count: " << count(dish) << " ";
//std::cerr << "tables: " << _dish_tables[dish].tables << "\n";
}
return delta;
}
template <typename Dish, typename Hash>
int
PYP<Dish,Hash>::num_tables(Dish dish) const
{
typename std::tr1::unordered_map<Dish, TableCounter, Hash>::const_iterator
//typename google::sparse_hash_map<Dish, TableCounter, Hash>::const_iterator
dtit = _dish_tables.find(dish);
//assert(dtit != _dish_tables.end());
if (dtit == _dish_tables.end())
return 0;
return dtit->second.tables;
}
template <typename Dish, typename Hash>
int
PYP<Dish,Hash>::num_tables() const
{
return _total_tables;
}
template <typename Dish, typename Hash>
std::ostream&
PYP<Dish,Hash>::debug_info(std::ostream& os) const
{
int hists = 0, tables = 0;
for (typename std::tr1::unordered_map<Dish, TableCounter, Hash>::const_iterator
//for (typename google::sparse_hash_map<Dish, TableCounter, Hash>::const_iterator
dtit = _dish_tables.begin(); dtit != _dish_tables.end(); ++dtit)
{
hists += dtit->second.table_histogram.size();
tables += dtit->second.tables;
// if (dtit->second.tables <= 0)
// std::cerr << dtit->first << " " << count(dtit->first) << std::endl;
assert(dtit->second.tables > 0);
assert(!dtit->second.table_histogram.empty());
// os << "Dish " << dtit->first << " has " << count(dtit->first) << " customers, and is sitting at " << dtit->second.tables << " tables.\n";
for (std::map<int,int>::const_iterator
hit = dtit->second.table_histogram.begin();
hit != dtit->second.table_histogram.end(); ++hit) {
// os << " " << hit->second << " tables with " << hit->first << " customers." << std::endl;
assert(hit->second > 0);
}
}
os << "restaurant has "
<< _total_customers << " customers; "
<< _total_tables << " tables; "
<< tables << " tables'; "
<< num_types() << " dishes; "
<< _dish_tables.size() << " dishes'; and "
<< hists << " histogram entries\n";
return os;
}
template <typename Dish, typename Hash>
void
PYP<Dish,Hash>::clear()
{
this->std::tr1::unordered_map<Dish,int,Hash>::clear();
//this->google::sparse_hash_map<Dish,int,Hash>::clear();
_dish_tables.clear();
_total_tables = _total_customers = 0;
}
// log_restaurant_prob returns the log probability of the PYP table configuration.
// Excludes Hierarchical P0 term which must be calculated separately.
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_restaurant_prob() const {
if (_total_customers < 1)
return (double)0.0;
double log_prob = 0.0;
double lgamma1a = lgamma(1.0-_a);
//std::cerr << "-------------------\n" << std::endl;
for (typename DishTableType::const_iterator dish_it=_dish_tables.begin();
dish_it != _dish_tables.end(); ++dish_it) {
for (std::map<int, int>::const_iterator table_it=dish_it->second.table_histogram.begin();
table_it !=dish_it->second.table_histogram.end(); ++table_it) {
log_prob += (table_it->second * (lgamma(table_it->first - _a) - lgamma1a));
//std::cerr << "|" << dish_it->first->parent << " --> " << dish_it->first->rhs << " " << table_it->first << " " << table_it->second << " " << log_prob;
}
}
//std::cerr << std::endl;
log_prob += (_a == (double)0.0 ? (_total_tables-1.0)*log(_b) : (_total_tables-1.0)*log(_a) + lgamma((_total_tables-1.0) + _b/_a) - lgamma(_b/_a));
//std::cerr << "\t\t" << log_prob << std::endl;
log_prob += (lgamma(1.0 + _b) - lgamma(_total_customers + _b));
//std::cerr << _total_customers << " " << _total_tables << " " << log_prob << " " << log_prior() << std::endl;
//std::cerr << _a << " " << _b << std::endl;
if (!std::isfinite(log_prob)) {
assert(false);
}
//return log_prob;
if (log_prob > 0.0)
std::cerr << log_prob << std::endl;
return log_prob;// + log_prior();
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_prior() const {
double prior = 0.0;
if (_a_beta_a > 0.0 && _a_beta_b > 0.0 && _a > 0.0)
prior += log_prior_a(_a, _a_beta_a, _a_beta_b);
if (_b_gamma_s > 0.0 && _b_gamma_c > 0.0)
prior += log_prior_b(_b, _b_gamma_c, _b_gamma_s);
return prior;
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_prior_a(double a, double beta_a, double beta_b) {
return lbetadist(a, beta_a, beta_b);
}
template <typename Dish, typename Hash>
double
PYP<Dish,Hash>::log_prior_b(double b, double gamma_c, double gamma_s) {
return lgammadist(b, gamma_c, gamma_s);
}
template <typename Dish, typename Hash>
long double PYP<Dish,Hash>::lbetadist(long double x, long double alpha, long double beta) {
assert(x > 0);
assert(x < 1);
assert(alpha > 0);
assert(beta > 0);
return (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta);
//boost::math::lgamma
}
template <typename Dish, typename Hash>
long double PYP<Dish,Hash>::lgammadist(long double x, long double alpha, long double beta) {
assert(alpha > 0);
assert(beta > 0);
return (alpha-1)*log(x) - alpha*log(beta) - x/beta - lgamma(alpha);
}
template <typename Dish, typename Hash>
template <typename Uniform01>
void
PYP<Dish,Hash>::resample_prior(Uniform01& rnd) {
for (int num_its=5; num_its >= 0; --num_its) {
resample_prior_b(rnd);
resample_prior_a(rnd);
}
resample_prior_b(rnd);
}
template <typename Dish, typename Hash>
template <typename Uniform01>
void
PYP<Dish,Hash>::resample_prior_b(Uniform01& rnd) {
if (_total_tables == 0)
return;
//int niterations = 10; // number of resampling iterations
int niterations = 5; // number of resampling iterations
//std::cerr << "\n## resample_prior_b(), initial a = " << _a << ", b = " << _b << std::endl;
resample_b_type b_log_prob(_total_customers, _total_tables, _a, _b_gamma_c, _b_gamma_s);
_b = slice_sampler1d(b_log_prob, _b, rnd, (double) 0.0, std::numeric_limits<double>::infinity(),
//_b = slice_sampler1d(b_log_prob, _b, mt_genrand_res53, (double) 0.0, std::numeric_limits<double>::infinity(),
(double) 0.0, niterations, 100*niterations);
//std::cerr << "\n## resample_prior_b(), final a = " << _a << ", b = " << _b << std::endl;
}
template <typename Dish, typename Hash>
template <typename Uniform01>
void
PYP<Dish,Hash>::resample_prior_a(Uniform01& rnd) {
if (_total_tables == 0)
return;
//int niterations = 10;
int niterations = 5;
//std::cerr << "\n## Initial a = " << _a << ", b = " << _b << std::endl;
resample_a_type a_log_prob(_total_customers, _total_tables, _b, _a_beta_a, _a_beta_b, _dish_tables);
_a = slice_sampler1d(a_log_prob, _a, rnd, std::numeric_limits<double>::min(),
//_a = slice_sampler1d(a_log_prob, _a, mt_genrand_res53, std::numeric_limits<double>::min(),
(double) 1.0, (double) 0.0, niterations, 100*niterations);
}
#endif
|