1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
//
// Minimises given functional using the projected gradient method. Based on
// algorithm and demonstration example in Linear and Nonlinear Programming,
// Luenberger and Ye, 3rd ed., p 370.
//
#include "invert.hh"
#include <iostream>
using namespace std;
double
f(double x1, double x2, double x3, double x4)
{
return x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4 - 2 * x1 - 3 * x4;
}
ublas::vector<double>
g(double x1, double x2, double x3, double x4)
{
ublas::vector<double> v(4);
v(0) = 2 * x1 - 2;
v(1) = 2 * x2;
v(2) = 2 * x3;
v(3) = 2 * x4 - 3;
return v;
}
ublas::matrix<double>
activeConstraints(double x1, double x2, double x3, double x4)
{
int n = 2;
if (x1 == 0) ++n;
if (x2 == 0) ++n;
if (x3 == 0) ++n;
if (x4 == 0) ++n;
ublas::matrix<double> a(n,4);
a(0, 0) = 2; a(0, 1) = 1; a(0, 2) = 1; a(0, 3) = 4;
a(1, 0) = 1; a(1, 1) = 1; a(1, 2) = 2; a(1, 3) = 1;
int c = 2;
if (x1 == 0) a(c++, 0) = 1;
if (x2 == 0) a(c++, 1) = 1;
if (x3 == 0) a(c++, 2) = 1;
if (x4 == 0) a(c++, 3) = 1;
return a;
}
ublas::matrix<double>
projection(const ublas::matrix<double> &a)
{
ublas::matrix<double> aT = ublas::trans(a);
ublas::matrix<double> inv(a.size1(), a.size1());
bool ok = invert_matrix(ublas::matrix<double>(ublas::prod(a, aT)), inv);
assert(ok && "Failed to invert matrix");
return ublas::identity_matrix<double>(4) -
ublas::prod(aT, ublas::matrix<double>(ublas::prod(inv, a)));
}
int main(int argc, char *argv[])
{
double x1 = 2, x2 = 2, x3 = 1, x4 = 0;
double fval = f(x1, x2, x3, x4);
cout << "f = " << fval << endl;
ublas::vector<double> grad = g(x1, x2, x3, x4);
cout << "g = " << grad << endl;
ublas::matrix<double> A = activeConstraints(x1, x2, x3, x4);
cout << "A = " << A << endl;
ublas::matrix<double> P = projection(A);
cout << "P = " << P << endl;
// the direction of movement
ublas::vector<double> d = prod(P, grad);
cout << "d = " << (d / d(0)) << endl;
// special case for d = 0
// next solve for limits on the line search
// then use golden rule technique between these values (if bounded)
// or simple Armijo's rule technique
return 0;
}
|