1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
#include <iostream>
#include <tr1/memory>
#include <queue>
#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "pf.h"
#include "base_distributions.h"
#include "monotonic_pseg.h"
#include "reachability.h"
#include "viterbi.h"
#include "hg.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "ccrp_onetable.h"
#include "corpus.h"
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
shared_ptr<MT19937> prng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
("input,i",po::value<string>(),"Read parallel data from")
("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("input") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct BackwardEstimateSym {
BackwardEstimateSym(const Model1& m1,
const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
}
const prob_t& operator()(unsigned src_cov, unsigned trg_cov) const {
assert(src_cov <= src_.size());
assert(trg_cov <= trg_.size());
prob_t& e = cache_[src_cov][trg_cov];
if (e.is_0()) {
if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
vector<WordID> r(src_.size() + 1); r.clear();
for (int i = src_cov; i < src_.size(); ++i)
r.push_back(src_[i]);
r.push_back(0); // NULL word
const prob_t uniform_alignment(1.0 / r.size());
e.logeq(Md::log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
for (unsigned j = trg_cov; j < trg_.size(); ++j) {
prob_t p;
for (unsigned i = 0; i < r.size(); ++i)
p += model1_(r[i], trg_[j]);
if (p.is_0()) {
cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
abort();
}
p *= uniform_alignment;
e *= p;
}
r.pop_back();
const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
prob_t inv;
inv.logeq(Md::log_poisson(r.size(), trg_.size() - trg_cov));
for (unsigned i = 0; i < r.size(); ++i) {
prob_t p;
for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
if (p.is_0()) {
cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
abort();
}
p *= inv_uniform;
inv *= p;
}
prob_t x = pow(e * inv, 0.5);
e = x;
//cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
}
return e;
}
const Model1& model1_;
const Model1& invmodel1_;
const vector<WordID>& src_;
const vector<WordID>& trg_;
mutable unordered_map<unsigned, map<unsigned, prob_t> > cache_;
};
struct Particle {
Particle() : weight(prob_t::One()), src_cov(), trg_cov() {}
prob_t weight;
prob_t gamma_last;
vector<TRulePtr> rules;
int src_cov;
int trg_cov;
};
ostream& operator<<(ostream& o, const vector<bool>& v) {
for (int i = 0; i < v.size(); ++i)
o << (v[i] ? '1' : '0');
return o;
}
ostream& operator<<(ostream& o, const Particle& p) {
o << "[src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
return o;
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
const unsigned particles = conf["particles"].as<unsigned>();
const unsigned samples = conf["samples"].as<unsigned>();
const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();
if (!conf.count("model1")) {
cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
return 1;
}
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
vector<vector<WordID> > corpuse, corpusf;
set<WordID> vocabe, vocabf;
cerr << "Reading corpus...\n";
corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
assert(corpusf.size() == corpuse.size());
const int kLHS = -TD::Convert("X");
Model1 m1(conf["model1"].as<string>());
Model1 invm1(conf["inverse_model1"].as<string>());
PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
PhraseJointBase_BiDir alp0(m1, invm1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
MonotonicParallelSegementationModel<PhraseJointBase_BiDir> m(alp0);
TRule xx("[X] ||| ms. kimura ||| MS. KIMURA ||| X=0");
cerr << xx << endl << lp0(xx) << " " << alp0(xx) << endl;
TRule xx12("[X] ||| . ||| PHARMACY . ||| X=0");
TRule xx21("[X] ||| pharmacy . ||| . ||| X=0");
// TRule xx22("[X] ||| . ||| . ||| X=0");
TRule xx22("[X] ||| . ||| THE . ||| X=0");
cerr << xx12 << "\t" << lp0(xx12) << " " << alp0(xx12) << endl;
cerr << xx21 << "\t" << lp0(xx21) << " " << alp0(xx21) << endl;
cerr << xx22 << "\t" << lp0(xx22) << " " << alp0(xx22) << endl;
cerr << "Initializing reachability limits...\n";
vector<Particle> ps(corpusf.size());
vector<Reachability> reaches; reaches.reserve(corpusf.size());
for (int ci = 0; ci < corpusf.size(); ++ci)
reaches.push_back(Reachability(corpusf[ci].size(),
corpuse[ci].size(),
kMAX_SRC_PHRASE,
kMAX_TRG_PHRASE));
cerr << "Sampling...\n";
vector<Particle> tmp_p(10000); // work space
SampleSet<prob_t> pfss;
SystematicResampleFilter<Particle> filter(&rng);
// MultinomialResampleFilter<Particle> filter(&rng);
for (int SS=0; SS < samples; ++SS) {
for (int ci = 0; ci < corpusf.size(); ++ci) {
vector<int>& src = corpusf[ci];
vector<int>& trg = corpuse[ci];
m.DecrementRulesAndStops(ps[ci].rules);
const prob_t q_stop = m.StopProbability();
const prob_t q_cont = m.ContinueProbability();
cerr << "P(stop)=" << q_stop << "\tP(continue)=" <<q_cont << endl;
BackwardEstimateSym be(m1, invm1, src, trg);
const Reachability& r = reaches[ci];
vector<Particle> lps(particles);
bool all_complete = false;
while(!all_complete) {
SampleSet<prob_t> ss;
// all particles have now been extended a bit, we will reweight them now
if (lps[0].trg_cov > 0)
filter(&lps);
// loop over all particles and extend them
bool done_nothing = true;
for (int pi = 0; pi < particles; ++pi) {
Particle& p = lps[pi];
int tic = 0;
while(p.trg_cov < trg.size() && tic < rejuv_freq) {
++tic;
done_nothing = false;
ss.clear();
TRule x; x.lhs_ = kLHS;
prob_t z;
for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
int i = p.src_cov;
assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
Particle& np = tmp_p[ss.size()];
np = p;
x.f_.clear();
for (int j = 0; j < src_len; ++j)
x.f_.push_back(src[i + j]);
np.src_cov += x.f_.size();
np.trg_cov += x.e_.size();
const bool stop_now = (np.src_cov == src_len && np.trg_cov == trg_len);
prob_t rp = m.RuleProbability(x) * (stop_now ? q_stop : q_cont);
np.gamma_last = rp;
const prob_t u = pow(np.gamma_last * pow(be(np.src_cov, np.trg_cov), 1.2), 0.1);
//cerr << "**rule=" << x << endl;
//cerr << " u=" << log(u) << " rule=" << rp << endl;
ss.add(u);
np.rules.push_back(TRulePtr(new TRule(x)));
z += u;
}
}
//cerr << "number of edges to consider: " << ss.size() << endl;
const int sampled = rng.SelectSample(ss);
prob_t q_n = ss[sampled] / z;
p = tmp_p[sampled];
//m.IncrementRule(*p.rules.back());
p.weight *= p.gamma_last / q_n;
//cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
//cerr << p << endl;
}
} // loop over particles (pi = 0 .. particles)
if (done_nothing) all_complete = true;
prob_t wv = prob_t::Zero();
for (int pp = 0; pp < lps.size(); ++pp)
wv += lps[pp].weight;
for (int pp = 0; pp < lps.size(); ++pp)
lps[pp].weight /= wv;
}
pfss.clear();
for (int i = 0; i < lps.size(); ++i)
pfss.add(lps[i].weight);
const int sampled = rng.SelectSample(pfss);
ps[ci] = lps[sampled];
m.IncrementRulesAndStops(lps[sampled].rules);
for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
}
cerr << "LLH: " << log(m.Likelihood()) << endl;
}
return 0;
}
|