1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
#include <iostream>
#include <tr1/memory>
#include <queue>
#include <boost/functional.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "base_measures.h"
#include "reachability.h"
#include "viterbi.h"
#include "hg.h"
#include "trule.h"
#include "tdict.h"
#include "filelib.h"
#include "dict.h"
#include "sampler.h"
#include "ccrp_nt.h"
#include "ccrp_onetable.h"
using namespace std;
using namespace tr1;
namespace po = boost::program_options;
shared_ptr<MT19937> prng;
size_t hash_value(const TRule& r) {
size_t h = boost::hash_value(r.e_);
boost::hash_combine(h, -r.lhs_);
boost::hash_combine(h, boost::hash_value(r.f_));
return h;
}
bool operator==(const TRule& a, const TRule& b) {
return (a.lhs_ == b.lhs_ && a.e_ == b.e_ && a.f_ == b.f_);
}
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
("input,i",po::value<string>(),"Read parallel data from")
("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
("random_seed,S",po::value<uint32_t>(), "Random seed");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || (conf->count("input") == 0)) {
cerr << dcmdline_options << endl;
exit(1);
}
}
void ReadParallelCorpus(const string& filename,
vector<vector<WordID> >* f,
vector<vector<WordID> >* e,
set<WordID>* vocab_f,
set<WordID>* vocab_e) {
f->clear();
e->clear();
vocab_f->clear();
vocab_e->clear();
istream* in;
if (filename == "-")
in = &cin;
else
in = new ifstream(filename.c_str());
assert(*in);
string line;
const WordID kDIV = TD::Convert("|||");
vector<WordID> tmp;
while(*in) {
getline(*in, line);
if (line.empty() && !*in) break;
e->push_back(vector<int>());
f->push_back(vector<int>());
vector<int>& le = e->back();
vector<int>& lf = f->back();
tmp.clear();
TD::ConvertSentence(line, &tmp);
bool isf = true;
for (unsigned i = 0; i < tmp.size(); ++i) {
const int cur = tmp[i];
if (isf) {
if (kDIV == cur) { isf = false; } else {
lf.push_back(cur);
vocab_f->insert(cur);
}
} else {
assert(cur != kDIV);
le.push_back(cur);
vocab_e->insert(cur);
}
}
assert(isf == false);
}
if (in != &cin) delete in;
}
struct MyJointModel {
MyJointModel(PhraseJointBase& rcp0) :
rp0(rcp0), base(prob_t::One()), rules(1,1) {}
void DecrementRule(const TRule& rule) {
if (rules.decrement(rule))
base /= rp0(rule);
}
void IncrementRule(const TRule& rule) {
if (rules.increment(rule))
base *= rp0(rule);
}
void IncrementRules(const vector<TRulePtr>& rules) {
for (int i = 0; i < rules.size(); ++i)
IncrementRule(*rules[i]);
}
void DecrementRules(const vector<TRulePtr>& rules) {
for (int i = 0; i < rules.size(); ++i)
DecrementRule(*rules[i]);
}
prob_t RuleProbability(const TRule& rule) const {
prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
return p;
}
prob_t Likelihood() const {
prob_t p = base;
prob_t q; q.logeq(rules.log_crp_prob());
p *= q;
for (unsigned l = 1; l < src_jumps.size(); ++l) {
if (src_jumps[l].num_customers() > 0) {
prob_t q;
q.logeq(src_jumps[l].log_crp_prob());
p *= q;
}
}
return p;
}
const PhraseJointBase& rp0;
prob_t base;
CCRP_NoTable<TRule> rules;
vector<CCRP_NoTable<int> > src_jumps;
};
struct BackwardEstimateSym {
BackwardEstimateSym(const Model1& m1,
const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
}
const prob_t& operator()(unsigned src_cov, unsigned trg_cov) const {
assert(src_cov <= src_.size());
assert(trg_cov <= trg_.size());
prob_t& e = cache_[src_cov][trg_cov];
if (e.is_0()) {
if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
vector<WordID> r(src_.size() + 1); r.clear();
for (int i = src_cov; i < src_.size(); ++i)
r.push_back(src_[i]);
r.push_back(0); // NULL word
const prob_t uniform_alignment(1.0 / r.size());
e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
for (unsigned j = trg_cov; j < trg_.size(); ++j) {
prob_t p;
for (unsigned i = 0; i < r.size(); ++i)
p += model1_(r[i], trg_[j]);
if (p.is_0()) {
cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
abort();
}
p *= uniform_alignment;
e *= p;
}
r.pop_back();
const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
prob_t inv;
inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov));
for (unsigned i = 0; i < r.size(); ++i) {
prob_t p;
for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
if (p.is_0()) {
cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
abort();
}
p *= inv_uniform;
inv *= p;
}
prob_t x = pow(e * inv, 0.5);
e = x;
//cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
}
return e;
}
const Model1& model1_;
const Model1& invmodel1_;
const vector<WordID>& src_;
const vector<WordID>& trg_;
mutable unordered_map<unsigned, map<unsigned, prob_t> > cache_;
};
struct Particle {
Particle() : weight(prob_t::One()), src_cov(), trg_cov() {}
prob_t weight;
prob_t gamma_last;
vector<TRulePtr> rules;
int src_cov;
int trg_cov;
};
ostream& operator<<(ostream& o, const vector<bool>& v) {
for (int i = 0; i < v.size(); ++i)
o << (v[i] ? '1' : '0');
return o;
}
ostream& operator<<(ostream& o, const Particle& p) {
o << "[src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
return o;
}
void FilterCrapParticlesAndReweight(vector<Particle>* pps) {
vector<Particle>& ps = *pps;
SampleSet<prob_t> ss;
for (int i = 0; i < ps.size(); ++i)
ss.add(ps[i].weight);
vector<Particle> nps; nps.reserve(ps.size());
const prob_t uniform_weight(1.0 / ps.size());
for (int i = 0; i < ps.size(); ++i) {
nps.push_back(ps[prng->SelectSample(ss)]);
nps[i].weight = uniform_weight;
}
nps.swap(ps);
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
const unsigned particles = conf["particles"].as<unsigned>();
const unsigned samples = conf["samples"].as<unsigned>();
const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();
if (!conf.count("model1")) {
cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
return 1;
}
if (conf.count("random_seed"))
prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
prng.reset(new MT19937);
MT19937& rng = *prng;
vector<vector<WordID> > corpuse, corpusf;
set<WordID> vocabe, vocabf;
cerr << "Reading corpus...\n";
ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
assert(corpusf.size() == corpuse.size());
const int kLHS = -TD::Convert("X");
Model1 m1(conf["model1"].as<string>());
Model1 invm1(conf["inverse_model1"].as<string>());
#if 0
PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
MyConditionalModel m(lp0);
#else
PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
MyJointModel m(lp0);
#endif
cerr << "Initializing reachability limits...\n";
vector<Particle> ps(corpusf.size());
vector<Reachability> reaches; reaches.reserve(corpusf.size());
for (int ci = 0; ci < corpusf.size(); ++ci)
reaches.push_back(Reachability(corpusf[ci].size(),
corpuse[ci].size(),
kMAX_SRC_PHRASE,
kMAX_TRG_PHRASE));
cerr << "Sampling...\n";
vector<Particle> tmp_p(10000); // work space
SampleSet<prob_t> pfss;
for (int SS=0; SS < samples; ++SS) {
for (int ci = 0; ci < corpusf.size(); ++ci) {
vector<int>& src = corpusf[ci];
vector<int>& trg = corpuse[ci];
m.DecrementRules(ps[ci].rules);
BackwardEstimateSym be(m1, invm1, src, trg);
const Reachability& r = reaches[ci];
vector<Particle> lps(particles);
bool all_complete = false;
while(!all_complete) {
SampleSet<prob_t> ss;
// all particles have now been extended a bit, we will reweight them now
if (lps[0].trg_cov > 0)
FilterCrapParticlesAndReweight(&lps);
// loop over all particles and extend them
bool done_nothing = true;
for (int pi = 0; pi < particles; ++pi) {
Particle& p = lps[pi];
int tic = 0;
while(p.trg_cov < trg.size() && tic < rejuv_freq) {
++tic;
done_nothing = false;
ss.clear();
TRule x; x.lhs_ = kLHS;
prob_t z;
for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
int i = p.src_cov;
assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
Particle& np = tmp_p[ss.size()];
np = p;
x.f_.clear();
for (int j = 0; j < src_len; ++j)
x.f_.push_back(src[i + j]);
np.src_cov += x.f_.size();
np.trg_cov += x.e_.size();
prob_t rp = m.RuleProbability(x);
np.gamma_last = rp;
const prob_t u = pow(np.gamma_last * pow(be(np.src_cov, np.trg_cov), 1.2), 0.1);
//cerr << "**rule=" << x << endl;
//cerr << " u=" << log(u) << " rule=" << rp << endl;
ss.add(u);
np.rules.push_back(TRulePtr(new TRule(x)));
z += u;
}
}
//cerr << "number of edges to consider: " << ss.size() << endl;
const int sampled = rng.SelectSample(ss);
prob_t q_n = ss[sampled] / z;
p = tmp_p[sampled];
//m.IncrementRule(*p.rules.back());
p.weight *= p.gamma_last / q_n;
//cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
//cerr << p << endl;
}
} // loop over particles (pi = 0 .. particles)
if (done_nothing) all_complete = true;
}
pfss.clear();
for (int i = 0; i < lps.size(); ++i)
pfss.add(lps[i].weight);
const int sampled = rng.SelectSample(pfss);
ps[ci] = lps[sampled];
m.IncrementRules(lps[sampled].rules);
for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
}
cerr << "LLH: " << log(m.Likelihood()) << endl;
}
return 0;
}
|