1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
#include <queue>
#include <sstream>
#include <iostream>
#include <boost/unordered_map.hpp>
#include <boost/functional/hash.hpp>
#include "sampler.h"
#include "filelib.h"
#include "hg_io.h"
#include "hg.h"
#include "ccrp_nt.h"
#include "trule.h"
#include "inside_outside.h"
using namespace std;
using namespace std::tr1;
double log_poisson(unsigned x, const double& lambda) {
assert(lambda > 0.0);
return log(lambda) * x - lgamma(x + 1) - lambda;
}
double log_decay(unsigned x, const double& b) {
assert(b > 1.0);
assert(x > 0);
return log(b - 1) - x * log(b);
}
struct SimpleBase {
SimpleBase(unsigned esize, unsigned fsize, unsigned ntsize = 144) :
uniform_e(-log(esize)),
uniform_f(-log(fsize)),
uniform_nt(-log(ntsize)) {
}
// binomial coefficient
static double choose(unsigned n, unsigned k) {
return exp(lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1));
}
// count the number of patterns of terminals and NTs in the rule, given elen and flen
static double log_number_of_patterns(const unsigned flen, const unsigned elen) {
static vector<vector<double> > counts;
if (elen >= counts.size()) counts.resize(elen + 1);
if (flen >= counts[elen].size()) counts[elen].resize(flen + 1);
double& count = counts[elen][flen];
if (count) return log(count);
const unsigned max_arity = min(elen, flen);
for (unsigned a = 0; a <= max_arity; ++a)
count += choose(elen, a) * choose(flen, a);
return log(count);
}
// return logp0 of rule | LHS
double operator()(const TRule& rule) const {
const unsigned flen = rule.f_.size();
const unsigned elen = rule.e_.size();
#if 0
double p = 0;
p += log_poisson(flen, 0.5); // flen ~Pois(0.5)
p += log_poisson(elen, flen); // elen | flen ~Pois(flen)
p -= log_number_of_patterns(flen, elen); // pattern | flen,elen ~Uniform
for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
if (rule.f_[i] <= 0) // according to pattern
p += uniform_nt; // draw NT ~Uniform
else
p += uniform_f; // draw f terminal ~Uniform
}
p -= lgamma(rule.Arity() + 1); // draw permutation ~Uniform
for (unsigned i = 0; i < elen; ++i) { // for each position in e-RHS
if (rule.e_[i] > 0) // according to pattern
p += uniform_e; // draw e|f term ~Uniform
// TODO this should prob be model 1
}
#else
double p = 0;
bool is_abstract = rule.f_[0] <= 0;
p += log(0.5);
if (is_abstract) {
if (flen == 2) p += log(0.99); else p += log(0.01);
} else {
p += log_decay(flen, 3);
}
for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
if (rule.f_[i] <= 0) // according to pattern
p += uniform_nt; // draw NT ~Uniform
else
p += uniform_f; // draw f terminal ~Uniform
}
#endif
return p;
}
const double uniform_e;
const double uniform_f;
const double uniform_nt;
vector<double> arities;
};
MT19937* rng = NULL;
template <typename Base>
struct MHSamplerEdgeProb {
MHSamplerEdgeProb(const Hypergraph& hg,
const map<int, CCRP_NoTable<TRule> >& rdp,
const Base& logp0,
const bool exclude_multiword_terminals) : edge_probs(hg.edges_.size()) {
for (int i = 0; i < edge_probs.size(); ++i) {
const TRule& rule = *hg.edges_[i].rule_;
const map<int, CCRP_NoTable<TRule> >::const_iterator it = rdp.find(rule.lhs_);
assert(it != rdp.end());
const CCRP_NoTable<TRule>& crp = it->second;
edge_probs[i].logeq(crp.logprob(rule, logp0(rule)));
if (exclude_multiword_terminals && rule.f_[0] > 0 && rule.f_.size() > 1)
edge_probs[i] = prob_t::Zero();
}
}
inline prob_t operator()(const Hypergraph::Edge& e) const {
return edge_probs[e.id_];
}
prob_t DerivationProb(const vector<int>& d) const {
prob_t p = prob_t::One();
for (unsigned i = 0; i < d.size(); ++i)
p *= edge_probs[d[i]];
return p;
}
vector<prob_t> edge_probs;
};
template <typename Base>
struct ModelAndData {
ModelAndData() :
base_lh(prob_t::One()),
logp0(10000, 10000),
mh_samples(),
mh_rejects() {}
void SampleCorpus(const string& hgpath, int i);
void ResampleHyperparameters() {
for (map<int, CCRP_NoTable<TRule> >::iterator it = rules.begin(); it != rules.end(); ++it)
it->second.resample_hyperparameters(rng);
}
CCRP_NoTable<TRule>& RuleCRP(int lhs) {
map<int, CCRP_NoTable<TRule> >::iterator it = rules.find(lhs);
if (it == rules.end()) {
rules.insert(make_pair(lhs, CCRP_NoTable<TRule>(1,1)));
it = rules.find(lhs);
}
return it->second;
}
void IncrementRule(const TRule& rule) {
CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
if (crp.increment(rule)) {
prob_t p; p.logeq(logp0(rule));
base_lh *= p;
}
}
void DecrementRule(const TRule& rule) {
CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
if (crp.decrement(rule)) {
prob_t p; p.logeq(logp0(rule));
base_lh /= p;
}
}
void DecrementDerivation(const Hypergraph& hg, const vector<int>& d) {
for (unsigned i = 0; i < d.size(); ++i) {
const TRule& rule = *hg.edges_[d[i]].rule_;
DecrementRule(rule);
}
}
void IncrementDerivation(const Hypergraph& hg, const vector<int>& d) {
for (unsigned i = 0; i < d.size(); ++i) {
const TRule& rule = *hg.edges_[d[i]].rule_;
IncrementRule(rule);
}
}
prob_t Likelihood() const {
prob_t p = prob_t::One();
for (map<int, CCRP_NoTable<TRule> >::const_iterator it = rules.begin(); it != rules.end(); ++it) {
prob_t q; q.logeq(it->second.log_crp_prob());
p *= q;
}
p *= base_lh;
return p;
}
void ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_derivation);
map<int, CCRP_NoTable<TRule> > rules; // [lhs] -> distribution over RHSs
prob_t base_lh;
SimpleBase logp0;
vector<vector<int> > samples; // sampled derivations
unsigned int mh_samples;
unsigned int mh_rejects;
};
template <typename Base>
void ModelAndData<Base>::SampleCorpus(const string& hgpath, int n) {
vector<Hypergraph> hgs(n); hgs.clear();
boost::unordered_map<TRule, unsigned> acc;
map<int, unsigned> tot;
for (int i = 0; i < n; ++i) {
ostringstream os;
os << hgpath << '/' << i << ".json.gz";
if (!FileExists(os.str())) continue;
hgs.push_back(Hypergraph());
ReadFile rf(os.str());
HypergraphIO::ReadFromJSON(rf.stream(), &hgs.back());
}
cerr << "Read " << hgs.size() << " alignment hypergraphs.\n";
samples.resize(hgs.size());
const unsigned SAMPLES = 2000;
const unsigned burnin = 3 * SAMPLES / 4;
const unsigned every = 20;
for (unsigned s = 0; s < SAMPLES; ++s) {
if (s % 10 == 0) {
if (s > 0) { cerr << endl; ResampleHyperparameters(); }
cerr << "[" << s << " LLH=" << log(Likelihood()) << " REJECTS=" << ((double)mh_rejects / mh_samples) << " LHS's=" << rules.size() << " base=" << log(base_lh) << "] ";
}
cerr << '.';
for (unsigned i = 0; i < hgs.size(); ++i) {
ResampleDerivation(hgs[i], &samples[i]);
if (s > burnin && s % every == 0) {
for (unsigned j = 0; j < samples[i].size(); ++j) {
const TRule& rule = *hgs[i].edges_[samples[i][j]].rule_;
++acc[rule];
++tot[rule.lhs_];
}
}
}
}
cerr << endl;
for (boost::unordered_map<TRule,unsigned>::iterator it = acc.begin(); it != acc.end(); ++it) {
cout << it->first << " MyProb=" << log(it->second)-log(tot[it->first.lhs_]) << endl;
}
}
template <typename Base>
void ModelAndData<Base>::ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_deriv) {
vector<int> cur;
cur.swap(*sampled_deriv);
const prob_t p_cur = Likelihood();
DecrementDerivation(hg, cur);
if (cur.empty()) {
// first iteration, create restaurants
for (int i = 0; i < hg.edges_.size(); ++i)
RuleCRP(hg.edges_[i].rule_->lhs_);
}
MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, cur.empty());
// MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, false);
const prob_t q_cur = wf.DerivationProb(cur);
vector<prob_t> node_probs;
Inside<prob_t, MHSamplerEdgeProb<SimpleBase> >(hg, &node_probs, wf);
queue<unsigned> q;
q.push(hg.nodes_.size() - 3);
while(!q.empty()) {
unsigned cur_node_id = q.front();
// cerr << "NODE=" << cur_node_id << endl;
q.pop();
const Hypergraph::Node& node = hg.nodes_[cur_node_id];
const unsigned num_in_edges = node.in_edges_.size();
unsigned sampled_edge = 0;
if (num_in_edges == 1) {
sampled_edge = node.in_edges_[0];
} else {
prob_t z;
assert(num_in_edges > 1);
SampleSet<prob_t> ss;
for (unsigned j = 0; j < num_in_edges; ++j) {
const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
prob_t p = wf.edge_probs[edge.id_]; // edge proposal prob
for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
p *= node_probs[edge.tail_nodes_[k]];
ss.add(p);
// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
z += p;
}
// for (unsigned j = 0; j < num_in_edges; ++j) {
// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
// }
// cerr << " --- \n";
sampled_edge = node.in_edges_[rng->SelectSample(ss)];
}
sampled_deriv->push_back(sampled_edge);
const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
q.push(edge.tail_nodes_[j]);
}
}
IncrementDerivation(hg, *sampled_deriv);
// cerr << "sampled derivation contains " << sampled_deriv->size() << " edges\n";
// cerr << "DERIV:\n";
// for (int i = 0; i < sampled_deriv->size(); ++i) {
// cerr << " " << hg.edges_[(*sampled_deriv)[i]].rule_->AsString() << endl;
// }
if (cur.empty()) return; // accept first sample
++mh_samples;
// only need to do MH if proposal is different to current state
if (cur != *sampled_deriv) {
const prob_t q_prop = wf.DerivationProb(*sampled_deriv);
const prob_t p_prop = Likelihood();
if (!rng->AcceptMetropolisHastings(p_prop, p_cur, q_prop, q_cur)) {
++mh_rejects;
DecrementDerivation(hg, *sampled_deriv);
IncrementDerivation(hg, cur);
swap(cur, *sampled_deriv);
}
}
}
int main(int argc, char** argv) {
rng = new MT19937;
ModelAndData<SimpleBase> m;
m.SampleCorpus("./hgs", 50);
// m.SampleCorpus("./btec/hgs", 5000);
return 0;
}
|