blob: db092e990d1bb65d820e13319305dd26adea67bb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
#ifndef _VOCABULARY_H_
#define _VOCABULARY_H_
#include <string>
#include <unordered_map>
#include <vector>
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/string.hpp>
#include <boost/serialization/vector.hpp>
using namespace std;
namespace extractor {
/**
* Data structure for mapping words to word ids.
*
* This strucure contains words located in the frequent collocations and words
* encountered during the grammar extraction time. This dictionary is
* considerably smaller than the dictionaries in the data arays (and so is the
* query time). Note that this is the single data structure that changes state
* and needs to have thread safe read/write operations.
*
* Note: For an experiment using different vocabulary instances for each thread,
* the running time did not improve implying that the critical regions do not
* cause bottlenecks.
*/
class Vocabulary {
public:
virtual ~Vocabulary();
// Returns the word id for the given word.
virtual int GetTerminalIndex(const string& word);
// Returns the id for a nonterminal located at the given position in a phrase.
int GetNonterminalIndex(int position);
// Checks if a symbol is a nonterminal.
bool IsTerminal(int symbol);
// Returns the word corresponding to the given word id.
virtual string GetTerminalValue(int symbol);
bool operator==(const Vocabulary& vocabulary) const;
private:
friend class boost::serialization::access;
template<class Archive> void save(Archive& ar, unsigned int) const {
ar << words;
}
template<class Archive> void load(Archive& ar, unsigned int) {
ar >> words;
for (size_t i = 0; i < words.size(); ++i) {
dictionary[words[i]] = i;
}
}
BOOST_SERIALIZATION_SPLIT_MEMBER();
unordered_map<string, int> dictionary;
vector<string> words;
};
} // namespace extractor
#endif
|