summaryrefslogtreecommitdiff
path: root/dtrain/dcommon.cc
blob: a6bdc92cd2965d8a3c779556dca2d22fe4dde136 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include "dcommon.h"



/*
 * make_ngrams
 *
 */
typedef map<vector<WordID>, size_t> Ngrams;
Ngrams
make_ngrams( vector<WordID>& s, size_t N )
{
  Ngrams ngrams;
  vector<WordID> ng;
  for ( size_t i = 0; i < s.size(); i++ ) {
    ng.clear();
    for ( size_t j = i; j < min( i+N, s.size() ); j++ ) {
      ng.push_back( s[j] );
      ngrams[ng]++;
    }
  }
  return ngrams;
}





/*
 * ngram_matches
 *
 */
NgramCounts
make_ngram_counts( vector<WordID> hyp, vector<WordID> ref, size_t N )
{
  Ngrams hyp_ngrams = make_ngrams( hyp, N );
  Ngrams ref_ngrams = make_ngrams( ref, N );
  NgramCounts counts( N );
  Ngrams::iterator it;
  Ngrams::iterator ti;
  for ( it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++ ) {
    ti = ref_ngrams.find( it->first );
    if ( ti != ref_ngrams.end() ) {
      counts.add( it->second, ti->second, it->first.size() - 1 );
    } else {
      counts.add( it->second, 0, it->first.size() - 1 );
    }
  }
  return counts;
}


/*
 * brevity_penaly
 *
 */
double
brevity_penaly( const size_t hyp_len, const size_t ref_len )
{
  if ( hyp_len > ref_len ) return 1;
  return exp( 1 - (double)ref_len/(double)hyp_len );
}


/*
 * bleu
 * as in "BLEU: a Method for Automatic Evaluation of Machine Translation" (Papineni et al. '02)
 * page TODO
 * 0 if for N one of the counts = 0
 */
double
bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
      size_t N, vector<float> weights  )
{
  if ( hyp_len == 0 || ref_len == 0 ) return 0;
  if ( ref_len < N ) N = ref_len;
  float N_ = (float)N;
  if ( weights.empty() )
  {
    for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
  }
  double sum = 0;
  for ( size_t i = 0; i < N; i++ ) {
    if ( counts.clipped[i] == 0 || counts.sum[i] == 0 ) return 0;
    sum += weights[i] * log( (double)counts.clipped[i] / (double)counts.sum[i] );
  }
  return brevity_penaly( hyp_len, ref_len ) * exp( sum );
}


/*
 * stupid_bleu
 * as in "ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation (Lin & Och '04)
 * page TODO
 * 0 iff no 1gram match
 */
double
stupid_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
             size_t N, vector<float> weights  )
{
  if ( hyp_len == 0 || ref_len == 0 ) return 0;
  if ( ref_len < N ) N = ref_len;
  float N_ = (float)N;
  if ( weights.empty() )
  {
    for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
  }
  double sum = 0;
  float add = 0;
  for ( size_t i = 0; i < N; i++ ) {
    if ( i == 1 ) add = 1;
    sum += weights[i] * log( ((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add) );
  }
  return brevity_penaly( hyp_len, ref_len ) * exp( sum );
}


/*
 * smooth_bleu
 * as in "An End-to-End Discriminative Approach to Machine Translation" (Liang et al. '06)
 * page TODO
 * max. 0.9375
 */
double
smooth_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
             const size_t N, vector<float> weights  )
{
  if ( hyp_len == 0 || ref_len == 0 ) return 0;
  float N_ = (float)N;
  if ( weights.empty() )
  {
    for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
  }
  double sum = 0;
  float j = 1;
  for ( size_t i = 0; i < N; i++ ) {
    if ( counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
    sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow( 2, N_-j+1 );
    j++;
  }
  return brevity_penaly( hyp_len, ref_len ) * sum;
}


/*
 * approx_bleu
 * as in "Online Large-Margin Training for Statistical Machine Translation" (Watanabe et al. '07)
 * page TODO
 *
 */
double
approx_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
     const size_t N, vector<float> weights )
{
  return bleu( counts, hyp_len, ref_len, N, weights );
}


/*
 * register_and_convert
 *
 */
void
register_and_convert(const vector<string>& strs, vector<WordID>& ids)
{
  vector<string>::const_iterator it;
  for ( it = strs.begin(); it < strs.end(); it++ ) {
    ids.push_back( TD::Convert( *it ) );
  }
}




/*
 *
 *
 */
void
test_ngrams()
{
  cout << "Testing ngrams..." << endl << endl;
  size_t N = 5;
  cout << "N = " << N << endl;
  vector<int> a; // hyp
  vector<int> b; // ref
  cout << "a ";
  for (size_t i = 1; i <= 8; i++) {
    cout << i << " ";
    a.push_back(i);
  }
  cout << endl << "b ";
  for (size_t i = 1; i <= 4; i++) {
    cout << i << " ";
    b.push_back(i);
  }
  cout << endl << endl;
  NgramCounts c = make_ngram_counts( a, b, N );
  assert( c.clipped[N-1] == 0 );
  assert( c.sum[N-1] == 4 );
  c.print();
  c += c;
  cout << endl;
  c.print();
  cout << endl;
}


/*
 *
 *
 */
double
approx_equal( double x, double y )
{
  const double EPSILON = 1E-5;
  if ( x == 0 ) return fabs( y ) <= EPSILON;
  if ( y == 0 ) return fabs( x ) <= EPSILON;
  return fabs( x - y ) / max( fabs(x), fabs(y) ) <= EPSILON;
}


/*
 *
 *
 */
void
test_metrics()
{
  cout << "Testing metrics..." << endl << endl;
  using namespace boost::assign;
  vector<string> a, b;
  vector<double> expect_vanilla, expect_smooth, expect_stupid;
  a +=              "a a a a", "a a a a", "a",   "a", "b",        "a a a a", "a a",  "a a a", "a b a"; // hyp
  b +=              "b b b b", "a a a a", "a",   "b", "b b b b",  "a",       "a a",  "a a a", "a b b"; // ref
  expect_vanilla += 0,         1,         1,      0,  0,          .25,       1,      1,       0;
  expect_smooth  += 0,          .9375,     .0625, 0,   .00311169, .0441942,   .1875,  .4375,   .161587;
  expect_stupid  += 0,         1,         1,      0,   .0497871,  .25,       1,      1,        .605707;
  vector<string> aa, bb;
  vector<WordID> aai, bbi;
  double vanilla, smooth, stupid;
  size_t N = 4;
  cout << "N = " << N << endl << endl;
  for ( size_t i = 0; i < a.size(); i++ ) {
    cout << " hyp: " << a[i] << endl;
    cout << " ref: " << b[i] << endl;
    aa.clear(); bb.clear(); aai.clear(); bbi.clear();
    boost::split( aa, a[i], boost::is_any_of(" ") );
    boost::split( bb, b[i], boost::is_any_of(" ") );
    register_and_convert( aa, aai );
    register_and_convert( bb, bbi );
    NgramCounts counts = make_ngram_counts( aai, bbi, N );
    vanilla =        bleu( counts, aa.size(), bb.size(), N);
    smooth  = smooth_bleu( counts, aa.size(), bb.size(), N);
    stupid  = stupid_bleu( counts, aa.size(), bb.size(), N);
    assert( approx_equal(vanilla, expect_vanilla[i]) );
    assert( approx_equal(smooth, expect_smooth[i]) );
    assert( approx_equal(stupid, expect_stupid[i]) );
    cout << setw(14) << "bleu = "      << vanilla << endl;
    cout << setw(14) << "smooth bleu = " << smooth << endl;
    cout << setw(14) << "stupid bleu = " << stupid << endl << endl;
  }
  cout << endl;
}

/*
 *
 *
 */
void
test_SetWeights()
{
  cout << "Testing Weights::SetWeight..." << endl << endl;
  Weights weights;
  SparseVector<double> lambdas;
  weights.InitSparseVector( &lambdas );
  weights.SetWeight( &lambdas, "test", 0 );
  weights.SetWeight( &lambdas, "test1", 1 );
  WordID fid = FD::Convert( "test2" );
  weights.SetWeight( &lambdas, fid, 2 );
  string fn = "weights-test";
  cout << "FD::NumFeats() " << FD::NumFeats() << endl;
  assert( FD::NumFeats() == 4 );
  weights.WriteToFile( fn, true );
  cout << endl;
}


/*
 *
 *
 */
void
run_tests()
{
  cout << endl;
  test_ngrams();
  cout << endl;
  test_metrics();
  cout << endl;
  test_SetWeights();
  exit(0);
}


void
print_FD()
{
  for ( size_t i = 0; i < FD::NumFeats(); i++ ) cout << FD::Convert(i)<< endl;
}