1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
#include "fast_lexical_cast.hpp"
#include "viterbi.h"
#include <sstream>
#include <vector>
#include "hg.h"
//#define DEBUG_VITERBI_SORT
using namespace std;
std::string viterbi_stats(Hypergraph const& hg, std::string const& name, bool estring, bool etree,bool show_derivation)
{
ostringstream o;
o << hg.stats(name);
if (estring) {
vector<WordID> trans;
const prob_t vs = ViterbiESentence(hg, &trans);
o<<name<<" Viterbi logp: "<<log(vs)<< endl;
o<<name<<" Viterbi: "<<TD::GetString(trans)<<endl;
}
if (etree) {
o<<name<<" tree: "<<ViterbiETree(hg)<<endl;
}
if (show_derivation) {
o<<name<<" derivation: ";
o << hg.show_viterbi_tree(false); // last item should be goal (or at least depend on prev items). TODO: this doesn't actually reorder the nodes in hg.
o<<endl;
}
#ifdef DEBUG_VITERBI_SORT
const_cast<Hypergraph&>(hg).ViterbiSortInEdges();
o<<name<<"sorted #1 derivation: ";
o<<hg.show_first_tree(false);
o<<endl;
#endif
return o.str();
}
string ViterbiETree(const Hypergraph& hg) {
vector<WordID> tmp;
Viterbi<ETreeTraversal>(hg, &tmp);
return TD::GetString(tmp);
}
string ViterbiFTree(const Hypergraph& hg) {
vector<WordID> tmp;
Viterbi<FTreeTraversal>(hg, &tmp);
return TD::GetString(tmp);
}
prob_t ViterbiESentence(const Hypergraph& hg, vector<WordID>* result) {
return Viterbi<ESentenceTraversal>(hg, result);
}
prob_t ViterbiFSentence(const Hypergraph& hg, vector<WordID>* result) {
return Viterbi<FSentenceTraversal>(hg, result);
}
int ViterbiELength(const Hypergraph& hg) {
int len = -1;
Viterbi<ELengthTraversal>(hg, &len);
return len;
}
int ViterbiPathLength(const Hypergraph& hg) {
int len = -1;
Viterbi<PathLengthTraversal>(hg, &len);
return len;
}
// create a strings of the form (S (X the man) (X said (X he (X would (X go)))))
struct JoshuaVisTraversal {
JoshuaVisTraversal() : left("("), space(" "), right(")") {}
const std::string left;
const std::string space;
const std::string right;
typedef std::vector<WordID> Result;
void operator()(const Hypergraph::Edge& edge,
const std::vector<const Result*>& ants,
Result* result) const {
Result tmp;
edge.rule_->ESubstitute(ants, &tmp);
const std::string cat = TD::Convert(edge.rule_->GetLHS() * -1);
if (cat == "Goal")
result->swap(tmp);
else {
ostringstream os;
os << left << cat << '{' << edge.i_ << '-' << edge.j_ << '}'
<< space << TD::GetString(tmp) << right;
TD::ConvertSentence(os.str(),
result);
}
}
};
string JoshuaVisualizationString(const Hypergraph& hg) {
vector<WordID> tmp;
Viterbi<JoshuaVisTraversal>(hg, &tmp);
return TD::GetString(tmp);
}
//TODO: move to appropriate header if useful elsewhere
/*
The simple solution like abs(f1-f2) <= e does not work for very small or very big values. This floating-point comparison algorithm is based on the more confident solution presented by Knuth in [1]. For a given floating point values u and v and a tolerance e:
| u - v | <= e * |u| and | u - v | <= e * |v|
defines a "very close with tolerance e" relationship between u and v
(1)
| u - v | <= e * |u| or | u - v | <= e * |v|
defines a "close enough with tolerance e" relationship between u and v
(2)
Both relationships are commutative but are not transitive. The relationship defined by inequations (1) is stronger that the relationship defined by inequations (2) (i.e. (1) => (2) ). Because of the multiplication in the right side of inequations, that could cause an unwanted underflow condition, the implementation is using modified version of the inequations (1) and (2) where all underflow, overflow conditions could be guarded safely:
| u - v | / |u| <= e and | u - v | / |v| <= e
| u - v | / |u| <= e or | u - v | / |v| <= e
(1`)
(2`)
*/
#include <cmath>
#include <stdexcept>
inline bool close_enough(double a,double b,double epsilon)
{
using std::fabs;
double diff=fabs(a-b);
return diff<=epsilon*fabs(a) || diff<=epsilon*fabs(b);
}
FeatureVector ViterbiFeatures(Hypergraph const& hg,WeightVector const* weights,bool fatal_dotprod_disagreement) {
FeatureVector r;
const prob_t p = Viterbi<FeatureVectorTraversal>(hg, &r);
if (weights) {
double logp=log(p);
double fv=r.dot(*weights);
const double EPSILON=1e-5;
if (!close_enough(logp,fv,EPSILON)) {
string complaint="ViterbiFeatures log prob disagrees with features.dot(weights)"+boost::lexical_cast<string>(logp)+"!="+boost::lexical_cast<string>(fv);
if (fatal_dotprod_disagreement)
throw std::runtime_error(complaint);
else
cerr<<complaint<<endl;
}
}
return r;
}
|