1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
#include "lextrans.h"
#include <iostream>
#include <cstdlib>
#include "filelib.h"
#include "hg.h"
#include "tdict.h"
#include "grammar.h"
#include "sentence_metadata.h"
using namespace std;
struct LexicalTransImpl {
LexicalTransImpl(const boost::program_options::variables_map& conf) :
use_null(conf.count("lextrans_use_null") > 0),
align_only_(conf.count("lextrans_align_only") > 0),
dyna_search_(conf.count("lextrans_dynasearch") > 0),
psg_file_(),
kXCAT(TD::Convert("X")*-1),
kNULL(TD::Convert("<eps>")),
kUNARY(new TRule("[X] ||| [X,1] ||| [1]")),
kBINARY(new TRule("[X] ||| [X,1] [X,2] ||| [1] [2]")),
kGOAL_RULE(new TRule("[Goal] ||| [X,1] ||| [1]")) {
if (conf.count("per_sentence_grammar_file")) {
psg_file_ = new ifstream(conf["per_sentence_grammar_file"].as<string>().c_str());
}
vector<string> gfiles = conf["grammar"].as<vector<string> >();
assert(gfiles.size() == 1);
ReadFile rf(gfiles.front());
TextGrammar *tg = new TextGrammar;
grammar.reset(tg);
istream* in = rf.stream();
int lc = 0;
bool flag = false;
string line;
while(*in) {
getline(*in, line);
if (!*in) continue;
++lc;
TRulePtr r(TRule::CreateRulePhrasetable(line));
tg->AddRule(r);
if (lc % 50000 == 0) { cerr << '.'; flag = true; }
if (lc % 2000000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
}
if (flag) cerr << endl;
cerr << "Loaded " << lc << " rules\n";
}
void LoadSentenceGrammar(const string& s_offset) {
const unsigned long long int offset = strtoull(s_offset.c_str(), NULL, 10);
psg_file_->seekg(offset, ios::beg);
TextGrammar *tg = new TextGrammar;
sup_grammar.reset(tg);
const string kEND_MARKER = "###EOS###";
string line;
while(true) {
assert(*psg_file_);
getline(*psg_file_, line);
if (line == kEND_MARKER) break;
TRulePtr r(TRule::CreateRulePhrasetable(line));
tg->AddRule(r);
}
}
void CreateEdgeHelper(int label_node, int src, int dest, Hypergraph* forest, map<int,int>* nl2node) {
assert(src != dest);
assert(label_node < forest->nodes_.size());
int& next_node_id = (*nl2node)[dest];
if (!next_node_id)
next_node_id = forest->AddNode(kXCAT)->id_;
if (src < 0) { // edge from the start node
Hypergraph::TailNodeVector tail(1, label_node);
Hypergraph::Edge* edge = forest->AddEdge(kUNARY, tail);
forest->ConnectEdgeToHeadNode(edge->id_, next_node_id);
} else { // edge connecting two nodes
map<int,int>::iterator it = nl2node->find(src);
assert(it != nl2node->end());
int prev_node_id = it->second;
Hypergraph::TailNodeVector tail(2, prev_node_id);
tail[1] = label_node;
Hypergraph::Edge* edge = forest->AddEdge(kBINARY, tail);
forest->ConnectEdgeToHeadNode(edge->id_, next_node_id);
}
}
bool BuildDynaSearchTrellis(const Lattice& lattice, const SentenceMetadata& smeta, Hypergraph* forest) {
const int e_len = smeta.GetTargetLength();
assert(e_len > 0);
const int f_len = lattice.size();
// hack to tell the feature function system how big the sentence pair is
map<WordID, int> words;
int wc = 0;
vector<WordID> ref_sent;
for (int i = 0; i < e_len; ++i) {
WordID word = smeta.GetReference()[i][0].label;
ref_sent.push_back(word);
if (words.find(word) == words.end()) {
words[word] = forest->AddNode(kXCAT)->id_;
}
}
// create zero-arity rules representing edge contents
for (int j = 0; j < f_len; ++j) { // for each word in the source
const WordID src_sym = (j < 0 ? kNULL : lattice[j][0].label);
const GrammarIter* gi = grammar->GetRoot()->Extend(src_sym);
if (!gi) {
cerr << "No translations found for: " << TD::Convert(src_sym) << "\n";
return false;
}
const RuleBin* rb = gi->GetRules();
assert(rb);
for (int k = 0; k < rb->GetNumRules(); ++k) {
TRulePtr rule = rb->GetIthRule(k);
const WordID trg_word = rule->e_[0];
const map<WordID, int>::iterator wordit = words.find(trg_word);
if (wordit == words.end()) continue;
Hypergraph::Edge* edge = forest->AddEdge(rule, Hypergraph::TailNodeVector());
edge->i_ = j;
edge->j_ = j+1;
edge->feature_values_ += edge->rule_->GetFeatureValues();
forest->ConnectEdgeToHeadNode(edge->id_, wordit->second);
}
}
map<int,int> nl2node;
int num_nodes = e_len * 2 - 1;
for (int i = 0; i < num_nodes; ++i) {
const bool is_leaf_node = (i <= 1);
if (i % 2 == 0) { // has two previous words
int prev_index1 = i - 2;
WordID trg1 = ref_sent[i / 2];
//cerr << prev_index1 << "-->" << i << "\t" << TD::Convert(trg1) << endl;
CreateEdgeHelper(words[trg1], prev_index1, i, forest, &nl2node);
if (!is_leaf_node) {
int prev_index2 = i - 1;
WordID trg2 = ref_sent[(i - 1) / 2];
//cerr << prev_index2 << "-->" << i << "\t" << TD::Convert(trg2) << endl;
CreateEdgeHelper(words[trg2], prev_index2, i, forest, &nl2node);
}
} else {
WordID trg_word = ref_sent[(i + 1) / 2];
int prev_index = i - 3;
//cerr << prev_index << "-->" << i << "\t" << TD::Convert(trg_word) << endl;
CreateEdgeHelper(words[trg_word], prev_index, i, forest, &nl2node);
}
//cerr << endl;
}
Hypergraph::TailNodeVector tail(1, forest->nodes_.size() - 1);
Hypergraph::Node* goal = forest->AddNode(TD::Convert("Goal")*-1);
Hypergraph::Edge* hg_edge = forest->AddEdge(kGOAL_RULE, tail);
forest->ConnectEdgeToHeadNode(hg_edge, goal);
forest->is_linear_chain_ = false;
return true;
}
bool BuildTrellis(const Lattice& lattice, const SentenceMetadata& smeta, Hypergraph* forest) {
if (dyna_search_) {
return BuildDynaSearchTrellis(lattice, smeta, forest);
}
forest->is_linear_chain_ = true;
if (psg_file_) {
const string offset = smeta.GetSGMLValue("psg");
if (offset.size() < 2 || offset[0] != '@') {
cerr << "per_sentence_grammar_file given but sentence id=" << smeta.GetSentenceID() << " doesn't have grammar info!\n";
abort();
}
LoadSentenceGrammar(offset.substr(1));
}
const int e_len = smeta.GetTargetLength();
assert(e_len > 0);
const int f_len = lattice.size();
// hack to tell the feature function system how big the sentence pair is
const int f_start = (use_null ? -1 : 0);
int prev_node_id = -1;
set<WordID> target_vocab;
const Lattice& ref = smeta.GetReference();
for (int i = 0; i < ref.size(); ++i) {
target_vocab.insert(ref[i][0].label);
}
bool all_sources_to_all_targets_ = false; // TODO configure this
set<WordID> trgs_used;
for (int i = 0; i < e_len; ++i) { // for each word in the *target*
Hypergraph::Node* node = forest->AddNode(kXCAT);
const int new_node_id = node->id_;
for (int j = f_start; j < f_len; ++j) { // for each word in the source
const WordID src_sym = (j < 0 ? kNULL : lattice[j][0].label);
const GrammarIter* gi = grammar->GetRoot()->Extend(src_sym);
if (!gi) {
if (psg_file_)
gi = sup_grammar->GetRoot()->Extend(src_sym);
if (!gi) {
cerr << "No translations found for: " << TD::Convert(src_sym) << "\n";
return false;
}
}
const RuleBin* rb = gi->GetRules();
assert(rb);
for (int k = 0; k < rb->GetNumRules(); ++k) {
TRulePtr rule = rb->GetIthRule(k);
const WordID trg_word = rule->e_[0];
if (align_only_) {
if (target_vocab.count(trg_word) == 0)
continue;
}
if (all_sources_to_all_targets_ && (target_vocab.count(trg_word) > 0))
trgs_used.insert(trg_word);
Hypergraph::Edge* edge = forest->AddEdge(rule, Hypergraph::TailNodeVector());
edge->i_ = j;
edge->j_ = j+1;
edge->prev_i_ = i;
edge->prev_j_ = i+1;
edge->feature_values_ += edge->rule_->GetFeatureValues();
forest->ConnectEdgeToHeadNode(edge->id_, new_node_id);
}
if (all_sources_to_all_targets_) {
for (set<WordID>::iterator it = target_vocab.begin(); it != target_vocab.end(); ++it) {
if (trgs_used.count(*it)) continue;
const WordID ungenerated_trg_word = *it;
TRulePtr rule;
rule.reset(TRule::CreateLexicalRule(src_sym, ungenerated_trg_word));
Hypergraph::Edge* edge = forest->AddEdge(rule, Hypergraph::TailNodeVector());
edge->i_ = j;
edge->j_ = j+1;
edge->prev_i_ = i;
edge->prev_j_ = i+1;
forest->ConnectEdgeToHeadNode(edge->id_, new_node_id);
}
trgs_used.clear();
}
}
if (prev_node_id >= 0) {
const int comb_node_id = forest->AddNode(kXCAT)->id_;
Hypergraph::TailNodeVector tail(2, prev_node_id);
tail[1] = new_node_id;
Hypergraph::Edge* edge = forest->AddEdge(kBINARY, tail);
forest->ConnectEdgeToHeadNode(edge->id_, comb_node_id);
prev_node_id = comb_node_id;
} else {
prev_node_id = new_node_id;
}
}
Hypergraph::TailNodeVector tail(1, forest->nodes_.size() - 1);
Hypergraph::Node* goal = forest->AddNode(TD::Convert("Goal")*-1);
Hypergraph::Edge* hg_edge = forest->AddEdge(kGOAL_RULE, tail);
forest->ConnectEdgeToHeadNode(hg_edge, goal);
return true;
}
private:
const bool use_null;
const bool align_only_;
const bool dyna_search_;
ifstream* psg_file_;
const WordID kXCAT;
const WordID kNULL;
const TRulePtr kUNARY;
const TRulePtr kBINARY;
const TRulePtr kGOAL_RULE;
GrammarPtr grammar;
GrammarPtr sup_grammar;
};
LexicalTrans::LexicalTrans(const boost::program_options::variables_map& conf) :
pimpl_(new LexicalTransImpl(conf)) {}
bool LexicalTrans::TranslateImpl(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
Hypergraph* forest) {
Lattice& lattice = smeta->src_lattice_;
LatticeTools::ConvertTextOrPLF(input, &lattice);
smeta->ComputeInputLatticeType();
if (smeta->GetInputType() != cdec::kSEQUENCE) {
cerr << "LexicalTrans: cannot deal with non-sequence inputs\n";
abort();
}
smeta->SetSourceLength(lattice.size());
if (!pimpl_->BuildTrellis(lattice, *smeta, forest)) return false;
forest->Reweight(weights);
// since we don't do any pruning, the node_hash will be the same for
// every run of the composer
int nc = 0;
for (auto& node : forest->nodes_)
node.node_hash = ++nc;
return true;
}
|