1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#ifndef INSIDE_OUTSIDE_H_
#define INSIDE_OUTSIDE_H_
#include <vector>
#include <algorithm>
#include "hg.h"
// semiring for Inside/Outside
struct Boolean {
bool x;
Boolean() : x() { }
Boolean(bool i) : x(i) { }
operator bool() const { return x; } // careful - this might cause a disaster with (bool)a + Boolean(b).
// normally you'd use the logical (short circuit) || && operators, but bool really is guaranteed to be 0 or 1 numerically. also note that | and & have equal precedence (!)
void operator+=(Boolean o) { x|=o.x; }
friend inline Boolean operator +(Boolean a,Boolean b) {
return Boolean(a.x|b.x);
}
void operator*=(Boolean o) { x&=o.x; }
friend inline Boolean operator *(Boolean a,Boolean b) {
return Boolean(a.x&b.x);
}
};
// run the inside algorithm and return the inside score
// if result is non-NULL, result will contain the inside
// score for each node
// NOTE: WeightType() must construct the semiring's additive identity
// WeightType(1) must construct the semiring's multiplicative identity
template<class WeightType, class WeightFunction>
WeightType Inside(const Hypergraph& hg,
std::vector<WeightType>* result = NULL,
const WeightFunction& weight = WeightFunction()) {
const unsigned num_nodes = hg.nodes_.size();
std::vector<WeightType> dummy;
std::vector<WeightType>& inside_score = result ? *result : dummy;
inside_score.clear();
inside_score.resize(num_nodes);
// std::fill(inside_score.begin(), inside_score.end(), WeightType()); // clear handles
for (unsigned i = 0; i < num_nodes; ++i) {
WeightType* const cur_node_inside_score = &inside_score[i];
Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_;
const unsigned num_in_edges = in.size();
for (unsigned j = 0; j < num_in_edges; ++j) {
const HG::Edge& edge = hg.edges_[in[j]];
WeightType score = weight(edge);
for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) {
const int tail_node_index = edge.tail_nodes_[k];
score *= inside_score[tail_node_index];
}
*cur_node_inside_score += score;
}
}
return inside_score.empty() ? WeightType(0) : inside_score.back();
}
template<class WeightType, class WeightFunction>
void Outside(const Hypergraph& hg,
std::vector<WeightType>& inside_score,
std::vector<WeightType>* result,
const WeightFunction& weight = WeightFunction(),
WeightType scale_outside = WeightType(1)
) {
assert(result);
const int num_nodes = hg.nodes_.size();
assert(static_cast<int>(inside_score.size()) == num_nodes);
std::vector<WeightType>& outside_score = *result;
outside_score.clear();
outside_score.resize(num_nodes);
// std::fill(outside_score.begin(), outside_score.end(), WeightType()); // cleared
outside_score.back() = scale_outside;
for (int i = num_nodes - 1; i >= 0; --i) {
const WeightType& head_node_outside_score = outside_score[i];
Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_;
const int num_in_edges = in.size();
for (int j = 0; j < num_in_edges; ++j) {
const HG::Edge& edge = hg.edges_[in[j]];
WeightType head_and_edge_weight = weight(edge);
head_and_edge_weight *= head_node_outside_score;
const int num_tail_nodes = edge.tail_nodes_.size();
for (int k = 0; k < num_tail_nodes; ++k) {
const int update_tail_node_index = edge.tail_nodes_[k];
WeightType* const tail_outside_score = &outside_score[update_tail_node_index];
WeightType inside_contribution = WeightType(1);
for (int l = 0; l < num_tail_nodes; ++l) {
const int other_tail_node_index = edge.tail_nodes_[l];
if (update_tail_node_index != other_tail_node_index)
inside_contribution *= inside_score[other_tail_node_index];
}
inside_contribution *= head_and_edge_weight;
*tail_outside_score += inside_contribution;
}
}
}
}
template <class K> // obviously not all semirings have a multiplicative inverse
struct OutsideNormalize {
bool enable;
OutsideNormalize(bool enable=true) : enable(enable) {}
K operator()(K k) { return enable?K(1)/k:K(1); }
};
template <class K>
struct Outside1 {
K operator()(K) { return K(1); }
};
template <class KType>
struct InsideOutsides {
// typedef typename KWeightFunction::Weight KType;
typedef std::vector<KType> Ks;
Ks inside,outside;
KType root_inside() {
return inside.back();
}
InsideOutsides() { }
template <class KWeightFunction>
KType compute(Hypergraph const& hg,KWeightFunction const& kwf=KWeightFunction()) {
return compute(hg,Outside1<KType>(),kwf);
}
template <class KWeightFunction,class O1>
KType compute(Hypergraph const& hg,O1 outside1,KWeightFunction const& kwf=KWeightFunction()) {
typedef typename KWeightFunction::Weight KType2;
assert(sizeof(KType2)==sizeof(KType)); // why am I doing this? because I want to share the vectors used for tropical and prob_t semirings. should instead have separate value type from semiring operations? or suck it up and split the code calling in Prune* into 2 types (template)
typedef std::vector<KType2> K2s;
K2s &inside2=reinterpret_cast<K2s &>(inside);
Inside<KType2,KWeightFunction>(hg, &inside2, kwf);
KType scale=outside1(reinterpret_cast<KType const&>(inside2.back()));
Outside<KType2,KWeightFunction>(hg, inside2, reinterpret_cast<K2s *>(&outside), kwf, reinterpret_cast<KType2 const&>(scale));
return root_inside();
}
// XWeightFunction::Result is result
template <class XWeightFunction>
typename XWeightFunction::Result expect(Hypergraph const& hg,XWeightFunction const& xwf=XWeightFunction()) {
typename XWeightFunction::Result x; // default constructor is semiring 0
for (int i = 0,num_nodes=hg.nodes_.size(); i < num_nodes; ++i) {
Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_;
const int num_in_edges = in.size();
for (int j = 0; j < num_in_edges; ++j) {
const HG::Edge& edge = hg.edges_[in[j]];
KType kbar_e = outside[i];
const int num_tail_nodes = edge.tail_nodes_.size();
for (int k = 0; k < num_tail_nodes; ++k)
kbar_e *= inside[edge.tail_nodes_[k]];
x += xwf(edge) * kbar_e;
}
}
return x;
}
template <class V,class VWeight>
void compute_edge_marginals(Hypergraph const& hg,std::vector<V> &vs,VWeight const& weight) {
vs.resize(hg.edges_.size());
for (int i = 0,num_nodes=hg.nodes_.size(); i < num_nodes; ++i) {
Hypergraph::EdgesVector const& in=hg.nodes_[i].in_edges_;
const int num_in_edges = in.size();
for (int j = 0; j < num_in_edges; ++j) {
int edgei=in[j];
const HG::Edge& edge = hg.edges_[edgei];
V x=weight(edge)*outside[i];
const int num_tail_nodes = edge.tail_nodes_.size();
for (int k = 0; k < num_tail_nodes; ++k)
x *= inside[edge.tail_nodes_[k]];
vs[edgei] = x;
}
}
}
};
// this is the Inside-Outside optimization described in Li and Eisner (EMNLP 2009)
// for computing the inside algorithm over expensive semirings
// (such as expectations over features). See Figure 4.
// NOTE: XType * KType must be valid (and yield XType)
// NOTE: This may do things slightly differently than you are used to, please
// read the description in Li and Eisner (2009) carefully!
template<class KType, class KWeightFunction, class XType, class XWeightFunction>
KType InsideOutside(const Hypergraph& hg,
XType* result_x,
const KWeightFunction& kwf = KWeightFunction(),
const XWeightFunction& xwf = XWeightFunction()) {
InsideOutsides<KType> io;
io.compute(hg,kwf);
*result_x=io.expect(hg,xwf);
return io.root_inside();
}
#endif
|