blob: a659b6bc951aac55a0e31be4c7fe378f50a482fe (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
#include "hg_union.h"
#ifndef HAVE_OLD_CPP
# include <unordered_map>
#else
# include <tr1/unordered_map>
namespace std { using std::tr1::unordered_set; }
#endif
#include "verbose.h"
#include "hg.h"
#include "sparse_vector.h"
using namespace std;
namespace HG {
static bool EdgesMatch(const HG::Edge& a, const Hypergraph& ahg, const HG::Edge& b, const Hypergraph& bhg) {
const unsigned arity = a.tail_nodes_.size();
if (arity != b.tail_nodes_.size()) return false;
if (a.rule_->e() != b.rule_->e()) return false;
if (a.rule_->f() != b.rule_->f()) return false;
for (unsigned i = 0; i < arity; ++i)
if (ahg.nodes_[a.tail_nodes_[i]].node_hash != bhg.nodes_[b.tail_nodes_[i]].node_hash) return false;
const SparseVector<double> diff = a.feature_values_ - b.feature_values_;
for (auto& kv : diff)
if (fabs(kv.second) > 1e-6) return false;
return true;
}
void Union(const Hypergraph& in, Hypergraph* out) {
if (&in == out) return;
if (out->nodes_.empty()) {
out->nodes_ = in.nodes_;
out->edges_ = in.edges_; return;
}
if (!in.AreNodesUniquelyIdentified()) {
cerr << "Union: Nodes are not uniquely identified in input!\n";
abort();
}
if (!out->AreNodesUniquelyIdentified()) {
cerr << "Union: Nodes are not uniquely identified in output!\n";
abort();
}
if (out->nodes_.back().node_hash != in.nodes_.back().node_hash) {
cerr << "Union: Goal nodes are mismatched!\n a=" << in.nodes_.back().node_hash << " b=" << out->nodes_.back().node_hash << "\n";
abort();
}
const int cgoal = out->nodes_.back().id_;
unordered_map<size_t, unsigned> h2n;
for (const auto& node : out->nodes_)
h2n[node.node_hash] = node.id_;
for (const auto& node : in.nodes_) {
if (h2n.count(node.node_hash) == 0) {
HG::Node* new_node = out->AddNode(node.cat_);
new_node->node_hash = node.node_hash;
h2n[node.node_hash] = new_node->id_;
}
}
double n_exists = 0;
double n_created = 0;
for (const auto& in_node : in.nodes_) {
HG::Node& out_node = out->nodes_[h2n[in_node.node_hash]];
for (const auto oeid : out_node.in_edges_) {
// TODO hash currently existing edges for quick check for duplication
}
for (const auto ieid : in_node.in_edges_) {
const HG::Edge& in_edge = in.edges_[ieid];
// TODO: replace slow N^2 check with hashing
bool edge_exists = false;
for (const auto oeid : out_node.in_edges_) {
if (EdgesMatch(in_edge, in, out->edges_[oeid], *out)) {
edge_exists = true;
break;
}
}
if (!edge_exists) {
const unsigned arity = in_edge.tail_nodes_.size();
TailNodeVector t(arity);
HG::Node& head = out->nodes_[h2n[in_node.node_hash]];
for (unsigned i = 0; i < arity; ++i)
t[i] = h2n[in.nodes_[in_edge.tail_nodes_[i]].node_hash];
HG::Edge* new_edge = out->AddEdge(in_edge, t);
out->ConnectEdgeToHeadNode(new_edge, &head);
++n_created;
//cerr << "Created: " << new_edge->rule_->AsString() << " [head=" << new_edge->head_node_ << "]\n";
} else {
++n_exists;
}
// cerr << "Not created: " << in.edges_[ieid].rule_->AsString() << "\n";
//}
}
}
if (!SILENT)
cerr << " Union: edges_created=" << n_created
<< " edges_already_existing="
<< n_exists << " ratio_new=" << (n_created / (n_exists + n_created))
<< endl;
out->TopologicallySortNodesAndEdges(cgoal);
}
}
|