1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
|
#include "hg_io.h"
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <iostream>
#include "fast_lexical_cast.hpp"
#include "tdict.h"
#include "json_parse.h"
#include "hg.h"
using namespace std;
struct HGReader : public JSONParser {
HGReader(Hypergraph* g) : rp("[X] ||| "), state(-1), hg(*g), nodes_needed(true), edges_needed(true) { nodes = 0; edges = 0; }
void CreateNode(const string& cat, const string& shash, const vector<int>& in_edges) {
WordID c = TD::Convert("X") * -1;
if (!cat.empty()) c = TD::Convert(cat) * -1;
Hypergraph::Node* node = hg.AddNode(c);
char* dend;
if (shash.size())
node->node_hash = strtoull(shash.c_str(), &dend, 16);
else
node->node_hash = 0;
for (int i = 0; i < in_edges.size(); ++i) {
if (in_edges[i] >= hg.edges_.size()) {
cerr << "JSONParser: in_edges[" << i << "]=" << in_edges[i]
<< ", but hg only has " << hg.edges_.size() << " edges!\n";
abort();
}
hg.ConnectEdgeToHeadNode(&hg.edges_[in_edges[i]], node);
}
}
void CreateEdge(const TRulePtr& rule, SparseVector<double>* feats, const SmallVectorUnsigned& tail) {
Hypergraph::Edge* edge = hg.AddEdge(rule, tail);
feats->swap(edge->feature_values_);
edge->i_ = spans[0];
edge->j_ = spans[1];
edge->prev_i_ = spans[2];
edge->prev_j_ = spans[3];
}
bool HandleJSONEvent(int type, const JSON_value* value) {
switch(state) {
case -1:
assert(type == JSON_T_OBJECT_BEGIN);
state = 0;
break;
case 0:
if (type == JSON_T_OBJECT_END) {
//cerr << "HG created\n"; // TODO, signal some kind of callback
} else if (type == JSON_T_KEY) {
string val = value->vu.str.value;
if (val == "features") { assert(fdict.empty()); state = 1; }
else if (val == "is_sorted") { state = 3; }
else if (val == "rules") { assert(rules.empty()); state = 4; }
else if (val == "node") { state = 8; }
else if (val == "edges") { state = 13; }
else { cerr << "Unexpected key: " << val << endl; return false; }
}
break;
// features
case 1:
if(type == JSON_T_NULL) { state = 0; break; }
assert(type == JSON_T_ARRAY_BEGIN);
state = 2;
break;
case 2:
if(type == JSON_T_ARRAY_END) { state = 0; break; }
assert(type == JSON_T_STRING);
fdict.push_back(FD::Convert(value->vu.str.value));
assert(fdict.back() > 0);
break;
// is_sorted
case 3:
assert(type == JSON_T_TRUE || type == JSON_T_FALSE);
is_sorted = (type == JSON_T_TRUE);
if (!is_sorted) { cerr << "[WARNING] is_sorted flag is ignored\n"; }
state = 0;
break;
// rules
case 4:
if(type == JSON_T_NULL) { state = 0; break; }
assert(type == JSON_T_ARRAY_BEGIN);
state = 5;
break;
case 5:
if(type == JSON_T_ARRAY_END) { state = 0; break; }
assert(type == JSON_T_INTEGER);
state = 6;
rule_id = value->vu.integer_value;
break;
case 6:
assert(type == JSON_T_STRING);
rules[rule_id] = TRulePtr(new TRule(value->vu.str.value));
state = 5;
break;
// Nodes
case 8:
assert(type == JSON_T_OBJECT_BEGIN);
++nodes;
in_edges.clear();
cat.clear();
shash.clear();
state = 9; break;
case 9:
if (type == JSON_T_OBJECT_END) {
//cerr << "Creating NODE\n";
CreateNode(cat, shash, in_edges);
state = 0; break;
}
assert(type == JSON_T_KEY);
cur_key = value->vu.str.value;
if (cur_key == "cat") { assert(cat.empty()); state = 10; break; }
if (cur_key == "in_edges") { assert(in_edges.empty()); state = 11; break; }
if (cur_key == "node_hash") { assert(shash.empty()); state = 24; break; }
cerr << "Syntax error: unexpected key " << cur_key << " in node specification.\n";
return false;
case 10:
assert(type == JSON_T_STRING || type == JSON_T_NULL);
cat = value->vu.str.value;
state = 9; break;
case 11:
if (type == JSON_T_NULL) { state = 9; break; }
assert(type == JSON_T_ARRAY_BEGIN);
state = 12; break;
case 12:
if (type == JSON_T_ARRAY_END) { state = 9; break; }
assert(type == JSON_T_INTEGER);
//cerr << "in_edges: " << value->vu.integer_value << endl;
in_edges.push_back(value->vu.integer_value);
break;
// "edges": [ { "tail": null, "feats" : [0,1.63,1,-0.54], "rule": 12},
// { "tail": null, "feats" : [0,0.87,1,0.02], "spans":[1,2,3,4], "rule": 17},
// { "tail": [0], "feats" : [1,2.3,2,15.3,"ExtraFeature",1.2], "rule": 13}]
case 13:
assert(type == JSON_T_ARRAY_BEGIN);
state = 14;
break;
case 14:
if (type == JSON_T_ARRAY_END) { state = 0; break; }
assert(type == JSON_T_OBJECT_BEGIN);
//cerr << "New edge\n";
++edges;
cur_rule.reset(); feats.clear(); tail.clear();
state = 15; break;
case 15:
if (type == JSON_T_OBJECT_END) {
CreateEdge(cur_rule, &feats, tail);
state = 14; break;
}
assert(type == JSON_T_KEY);
cur_key = value->vu.str.value;
//cerr << "edge key " << cur_key << endl;
if (cur_key == "rule") { assert(!cur_rule); state = 16; break; }
if (cur_key == "spans") { assert(!cur_rule); state = 22; break; }
if (cur_key == "feats") { assert(feats.empty()); state = 17; break; }
if (cur_key == "tail") { assert(tail.empty()); state = 20; break; }
cerr << "Unexpected key " << cur_key << " in edge specification\n";
return false;
case 16: // edge.rule
if (type == JSON_T_INTEGER) {
int rule_id = value->vu.integer_value;
if (rules.find(rule_id) == rules.end()) {
// rules list must come before the edge definitions!
cerr << "Rule_id " << rule_id << " given but only loaded " << rules.size() << " rules\n";
return false;
}
cur_rule = rules[rule_id];
} else if (type == JSON_T_STRING) {
cur_rule.reset(new TRule(value->vu.str.value));
} else {
cerr << "Rule must be either a rule id or a rule string" << endl;
return false;
}
// cerr << "Edge: rule=" << cur_rule->AsString() << endl;
state = 15;
break;
case 17: // edge.feats
if (type == JSON_T_NULL) { state = 15; break; }
assert(type == JSON_T_ARRAY_BEGIN);
state = 18; break;
case 18:
if (type == JSON_T_ARRAY_END) { state = 15; break; }
if (type != JSON_T_INTEGER && type != JSON_T_STRING) {
cerr << "Unexpected feature id type\n"; return false;
}
if (type == JSON_T_INTEGER) {
fid = value->vu.integer_value;
assert(fid < fdict.size());
fid = fdict[fid];
} else if (JSON_T_STRING) {
fid = FD::Convert(value->vu.str.value);
} else { abort(); }
state = 19;
break;
case 19:
{
assert(type == JSON_T_INTEGER || type == JSON_T_FLOAT);
double val = (type == JSON_T_INTEGER ? static_cast<double>(value->vu.integer_value) :
strtod(value->vu.str.value, NULL));
feats.set_value(fid, val);
state = 18;
break;
}
case 20: // edge.tail
if (type == JSON_T_NULL) { state = 15; break; }
assert(type == JSON_T_ARRAY_BEGIN);
state = 21; break;
case 21:
if (type == JSON_T_ARRAY_END) { state = 15; break; }
assert(type == JSON_T_INTEGER);
tail.push_back(value->vu.integer_value);
break;
case 22: // edge.spans
assert(type == JSON_T_ARRAY_BEGIN);
state = 23;
spans[0] = spans[1] = spans[2] = spans[3] = -1;
spanc = 0;
break;
case 23:
if (type == JSON_T_ARRAY_END) { state = 15; break; }
assert(type == JSON_T_INTEGER);
assert(spanc < 4);
spans[spanc] = value->vu.integer_value;
++spanc;
break;
case 24: // read node hash
assert(type == JSON_T_STRING);
shash = value->vu.str.value;
state = 9;
break;
}
return true;
}
string rp;
string cat;
SmallVectorUnsigned tail;
vector<int> in_edges;
string shash;
TRulePtr cur_rule;
map<int, TRulePtr> rules;
vector<int> fdict;
SparseVector<double> feats;
int state;
int fid;
int nodes;
int edges;
int spans[4];
int spanc;
string cur_key;
Hypergraph& hg;
int rule_id;
bool nodes_needed;
bool edges_needed;
bool is_sorted;
};
bool HypergraphIO::ReadFromJSON(istream* in, Hypergraph* hg) {
hg->clear();
HGReader reader(hg);
return reader.Parse(in);
}
static void WriteRule(const TRule& r, ostream* out) {
if (!r.lhs_) { (*out) << "[X] ||| "; }
JSONParser::WriteEscapedString(r.AsString(), out);
}
bool HypergraphIO::WriteToJSON(const Hypergraph& hg, bool remove_rules, ostream* out) {
if (hg.empty()) { *out << "{}\n"; return true; }
map<const TRule*, int> rid;
ostream& o = *out;
rid[NULL] = 0;
o << '{';
if (!remove_rules) {
o << "\"rules\":[";
for (int i = 0; i < hg.edges_.size(); ++i) {
const TRule* r = hg.edges_[i].rule_.get();
int &id = rid[r];
if (!id) {
id=rid.size() - 1;
if (id > 1) o << ',';
o << id << ',';
WriteRule(*r, &o);
};
}
o << "],";
}
const bool use_fdict = FD::NumFeats() < 1000;
if (use_fdict) {
o << "\"features\":[";
for (int i = 1; i < FD::NumFeats(); ++i) {
o << (i==1 ? "":",");
JSONParser::WriteEscapedString(FD::Convert(i), &o);
}
o << "],";
}
vector<int> edgemap(hg.edges_.size(), -1); // edges may be in non-topo order
int edge_count = 0;
for (int i = 0; i < hg.nodes_.size(); ++i) {
const Hypergraph::Node& node = hg.nodes_[i];
if (i > 0) { o << ","; }
o << "\"edges\":[";
for (int j = 0; j < node.in_edges_.size(); ++j) {
const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
edgemap[edge.id_] = edge_count;
++edge_count;
o << (j == 0 ? "" : ",") << "{";
o << "\"tail\":[";
for (int k = 0; k < edge.tail_nodes_.size(); ++k) {
o << (k > 0 ? "," : "") << edge.tail_nodes_[k];
}
o << "],";
o << "\"spans\":[" << edge.i_ << "," << edge.j_ << "," << edge.prev_i_ << "," << edge.prev_j_ << "],";
o << "\"feats\":[";
bool first = true;
for (SparseVector<double>::const_iterator it = edge.feature_values_.begin(); it != edge.feature_values_.end(); ++it) {
if (!it->second) continue; // don't write features that have a zero value
if (!it->first) continue; // if the feature set was frozen this might happen
if (!first) o << ',';
if (use_fdict)
o << (it->first - 1);
else {
JSONParser::WriteEscapedString(FD::Convert(it->first), &o);
}
o << ',' << it->second;
first = false;
}
o << "]";
if (!remove_rules) { o << ",\"rule\":" << rid[edge.rule_.get()]; }
o << "}";
}
o << "],";
o << "\"node\":{\"in_edges\":[";
for (int j = 0; j < node.in_edges_.size(); ++j) {
int mapped_edge = edgemap[node.in_edges_[j]];
assert(mapped_edge >= 0);
o << (j == 0 ? "" : ",") << mapped_edge;
}
o << "]";
if (node.cat_ < 0) {
o << ",\"cat\":";
JSONParser::WriteEscapedString(TD::Convert(node.cat_ * -1), &o);
}
char buf[48];
sprintf(buf, "%016lX", node.node_hash);
o << ",\"node_hash\":\"" << buf << "\"";
o << "}";
}
o << "}\n";
return true;
}
bool needs_escape[128];
void InitEscapes() {
memset(needs_escape, false, 128);
needs_escape[static_cast<size_t>('\'')] = true;
needs_escape[static_cast<size_t>('\\')] = true;
}
string HypergraphIO::Escape(const string& s) {
size_t len = s.size();
for (int i = 0; i < s.size(); ++i) {
unsigned char c = s[i];
if (c < 128 && needs_escape[c]) ++len;
}
if (len == s.size()) return s;
string res(len, ' ');
size_t o = 0;
for (int i = 0; i < s.size(); ++i) {
unsigned char c = s[i];
if (c < 128 && needs_escape[c])
res[o++] = '\\';
res[o++] = c;
}
assert(o == len);
return res;
}
string HypergraphIO::AsPLF(const Hypergraph& hg, bool include_global_parentheses) {
static bool first = true;
if (first) { InitEscapes(); first = false; }
if (hg.nodes_.empty()) return "()";
ostringstream os;
if (include_global_parentheses) os << '(';
static const string EPS="*EPS*";
for (int i = 0; i < hg.nodes_.size()-1; ++i) {
if (hg.nodes_[i].out_edges_.empty()) abort();
const bool last_node = (i == hg.nodes_.size() - 2);
const int out_edges_size = hg.nodes_[i].out_edges_.size();
// compound splitter adds an extra goal transition which we suppress with
// the following conditional
if (!last_node || out_edges_size != 1 ||
hg.edges_[hg.nodes_[i].out_edges_[0]].rule_->EWords() == 1) {
os << '(';
for (int j = 0; j < out_edges_size; ++j) {
const Hypergraph::Edge& e = hg.edges_[hg.nodes_[i].out_edges_[j]];
const string output = e.rule_->e_.size() ==2 ? Escape(TD::Convert(e.rule_->e_[1])) : EPS;
double prob = log(e.edge_prob_);
if (std::isinf(prob)) { prob = -9e20; }
if (std::isnan(prob)) { prob = 0; }
os << "('" << output << "'," << prob << "," << e.head_node_ - i << "),";
}
os << "),";
}
}
if (include_global_parentheses) os << ')';
return os.str();
}
string HypergraphIO::AsPLF(const Lattice& lat, bool include_global_parentheses) {
static bool first = true;
if (first) { InitEscapes(); first = false; }
if (lat.empty()) return "()";
ostringstream os;
if (include_global_parentheses) os << '(';
static const string EPS="*EPS*";
for (int i = 0; i < lat.size(); ++i) {
const vector<LatticeArc> arcs = lat[i];
os << '(';
for (int j = 0; j < arcs.size(); ++j) {
os << "('" << Escape(TD::Convert(arcs[j].label)) << "',"
<< arcs[j].cost << ',' << arcs[j].dist2next << "),";
}
os << "),";
}
if (include_global_parentheses) os << ')';
return os.str();
}
namespace PLF {
const string chars = "'\\";
const char& quote = chars[0];
const char& slash = chars[1];
// safe get
inline char get(const std::string& in, int c) {
if (c < 0 || c >= (int)in.size()) return 0;
else return in[(size_t)c];
}
// consume whitespace
inline void eatws(const std::string& in, int& c) {
while (get(in,c) == ' ') { c++; }
}
// from 'foo' return foo
std::string getEscapedString(const std::string& in, int &c)
{
eatws(in,c);
if (get(in,c++) != quote) return "ERROR";
std::string res;
char cur = 0;
do {
cur = get(in,c++);
if (cur == slash) { res += get(in,c++); }
else if (cur != quote) { res += cur; }
} while (get(in,c) != quote && (c < (int)in.size()));
c++;
eatws(in,c);
return res;
}
// basically atof
float getFloat(const std::string& in, int &c)
{
std::string tmp;
eatws(in,c);
while (c < (int)in.size() && get(in,c) != ' ' && get(in,c) != ')' && get(in,c) != ',') {
tmp += get(in,c++);
}
eatws(in,c);
if (tmp.empty()) {
cerr << "Syntax error while reading number! col=" << c << endl;
abort();
}
return atof(tmp.c_str());
}
// basically atoi
int getInt(const std::string& in, int &c)
{
std::string tmp;
eatws(in,c);
while (c < (int)in.size() && get(in,c) != ' ' && get(in,c) != ')' && get(in,c) != ',') {
tmp += get(in,c++);
}
eatws(in,c);
return atoi(tmp.c_str());
}
// maximum number of nodes permitted
#define MAX_NODES 100000000
// parse ('foo', 0.23)
void ReadPLFEdge(const std::string& in, int &c, int cur_node, Hypergraph* hg) {
if (get(in,c++) != '(') { cerr << "PCN/PLF parse error: expected (\n"; abort(); }
vector<WordID> ewords(2, 0);
ewords[1] = TD::Convert(getEscapedString(in,c));
TRulePtr r(new TRule(ewords));
r->ComputeArity();
// cerr << "RULE: " << r->AsString() << endl;
if (get(in,c++) != ',') { cerr << in << endl; cerr << "PCN/PLF parse error: expected , after string\n"; abort(); }
size_t cnNext = 1;
std::vector<float> probs;
probs.push_back(getFloat(in,c));
while (get(in,c) == ',') {
c++;
float val = getFloat(in,c);
probs.push_back(val);
// cerr << val << endl; //REMO
}
//if we read more than one prob, this was a lattice, last item was column increment
if (probs.size()>1) {
cnNext = static_cast<size_t>(probs.back());
probs.pop_back();
if (cnNext < 1) { cerr << cnNext << endl << "PCN/PLF parse error: bad link length at last element of cn alt block\n"; abort(); }
}
if (get(in,c++) != ')') { cerr << "PCN/PLF parse error: expected ) at end of cn alt block\n"; abort(); }
eatws(in,c);
Hypergraph::TailNodeVector tail(1, cur_node);
Hypergraph::Edge* edge = hg->AddEdge(r, tail);
//cerr << " <--" << cur_node << endl;
int head_node = cur_node + cnNext;
assert(head_node < MAX_NODES); // prevent malicious PLFs from using all the memory
if (hg->nodes_.size() < (head_node + 1)) { hg->ResizeNodes(head_node + 1); }
hg->ConnectEdgeToHeadNode(edge, &hg->nodes_[head_node]);
for (int i = 0; i < probs.size(); ++i)
edge->feature_values_.set_value(FD::Convert("Feature_" + boost::lexical_cast<string>(i)), probs[i]);
}
// parse (('foo', 0.23), ('bar', 0.77))
void ReadPLFNode(const std::string& in, int &c, int cur_node, int line, Hypergraph* hg) {
//cerr << "PLF READING NODE " << cur_node << endl;
if (hg->nodes_.size() < (cur_node + 1)) { hg->ResizeNodes(cur_node + 1); }
if (get(in,c++) != '(') { cerr << line << ": Syntax error 1\n"; abort(); }
eatws(in,c);
while (1) {
if (c > (int)in.size()) { break; }
if (get(in,c) == ')') {
c++;
eatws(in,c);
break;
}
if (get(in,c) == ',' && get(in,c+1) == ')') {
c+=2;
eatws(in,c);
break;
}
if (get(in,c) == ',') { c++; eatws(in,c); }
ReadPLFEdge(in, c, cur_node, hg);
}
}
} // namespace PLF
void HypergraphIO::ReadFromPLF(const std::string& in, Hypergraph* hg, int line) {
hg->clear();
int c = 0;
int cur_node = 0;
if (in[c++] != '(') { cerr << line << ": Syntax error!\n"; abort(); }
while (1) {
if (c > (int)in.size()) { break; }
if (PLF::get(in,c) == ')') {
c++;
PLF::eatws(in,c);
break;
}
if (PLF::get(in,c) == ',' && PLF::get(in,c+1) == ')') {
c+=2;
PLF::eatws(in,c);
break;
}
if (PLF::get(in,c) == ',') { c++; PLF::eatws(in,c); }
PLF::ReadPLFNode(in, c, cur_node, line, hg);
++cur_node;
}
assert(cur_node == hg->nodes_.size() - 1);
}
void HypergraphIO::PLFtoLattice(const string& plf, Lattice* pl) {
Lattice& l = *pl;
Hypergraph g;
ReadFromPLF(plf, &g, 0);
const int num_nodes = g.nodes_.size() - 1;
l.resize(num_nodes);
int fid0=FD::Convert("Feature_0");
for (int i = 0; i < num_nodes; ++i) {
vector<LatticeArc>& alts = l[i];
const Hypergraph::Node& node = g.nodes_[i];
const int num_alts = node.out_edges_.size();
alts.resize(num_alts);
for (int j = 0; j < num_alts; ++j) {
const Hypergraph::Edge& edge = g.edges_[node.out_edges_[j]];
alts[j].label = edge.rule_->e_[1];
alts[j].cost = edge.feature_values_.get(fid0);
alts[j].dist2next = edge.head_node_ - node.id_;
}
}
}
void HypergraphIO::WriteAsCFG(const Hypergraph& hg) {
vector<int> cats(hg.nodes_.size());
// each node in the translation forest becomes a "non-terminal" in the new
// grammar, create the labels here
const string kSEP = "_";
for (int i = 0; i < hg.nodes_.size(); ++i) {
string pstr = "CAT";
if (hg.nodes_[i].cat_ < 0)
pstr = TD::Convert(-hg.nodes_[i].cat_);
cats[i] = TD::Convert(pstr + kSEP + boost::lexical_cast<string>(i)) * -1;
}
for (int i = 0; i < hg.edges_.size(); ++i) {
const Hypergraph::Edge& edge = hg.edges_[i];
const vector<WordID>& tgt = edge.rule_->e();
const vector<WordID>& src = edge.rule_->f();
TRulePtr rule(new TRule);
rule->prev_i = edge.i_;
rule->prev_j = edge.j_;
rule->lhs_ = cats[edge.head_node_];
vector<WordID>& f = rule->f_;
vector<WordID>& e = rule->e_;
f.resize(tgt.size()); // swap source and target, since the parser
e.resize(src.size()); // parses using the source side!
Hypergraph::TailNodeVector tn(edge.tail_nodes_.size());
int ntc = 0;
for (int j = 0; j < tgt.size(); ++j) {
const WordID& cur = tgt[j];
if (cur > 0) {
f[j] = cur;
} else {
tn[ntc++] = cur;
f[j] = cats[edge.tail_nodes_[-cur]];
}
}
ntc = 0;
for (int j = 0; j < src.size(); ++j) {
const WordID& cur = src[j];
if (cur > 0) {
e[j] = cur;
} else {
e[j] = tn[ntc++];
}
}
rule->scores_ = edge.feature_values_;
rule->parent_rule_ = edge.rule_;
rule->ComputeArity();
cout << rule->AsString() << endl;
}
}
/* Output format:
* #vertices
* for each vertex in bottom-up topological order:
* #downward_edges
* for each downward edge:
* RHS with [vertex_index] for NTs ||| scores
*/
void HypergraphIO::WriteTarget(const std::string &base, unsigned int id, const Hypergraph& hg) {
std::string name(base);
name += '/';
name += boost::lexical_cast<std::string>(id);
std::fstream out(name.c_str(), std::fstream::out);
out << hg.nodes_.size() << ' ' << hg.edges_.size() << '\n';
for (unsigned int i = 0; i < hg.nodes_.size(); ++i) {
const Hypergraph::EdgesVector &edges = hg.nodes_[i].in_edges_;
out << edges.size() << '\n';
for (unsigned int j = 0; j < edges.size(); ++j) {
const Hypergraph::Edge &edge = hg.edges_[edges[j]];
const std::vector<WordID> &e = edge.rule_->e();
for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) {
if (*word <= 0) {
out << '[' << edge.tail_nodes_[-*word] << "] ";
} else {
out << TD::Convert(*word) << ' ';
}
}
out << "||| " << edge.rule_->scores_ << '\n';
}
}
}
|