1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
|
#include "hg.h"
#include <algorithm>
#include <cassert>
#include <numeric>
#include <map>
#include <iostream>
#include <sstream>
#ifndef HAVE_OLD_CPP
# include <unordered_set>
#else
# include <tr1/unordered_set>
namespace std { using std::tr1::unordered_set; }
#endif
#include "viterbi.h"
#include "inside_outside.h"
#include "tdict.h"
#include "verbose.h"
using namespace std;
bool Hypergraph::AreNodesUniquelyIdentified() const {
unordered_set<size_t> s(nodes_.size() * 3 + 7);
for (const auto& n : nodes_)
if (!s.insert(n.node_hash).second)
return false;
return true;
}
Hypergraph::Edge const* Hypergraph::ViterbiSortInEdges() {
NodeProbs nv;
ComputeNodeViterbi(&nv);
return SortInEdgesByNodeViterbi(nv);
}
Hypergraph::Edge const* Hypergraph::SortInEdgesByNodeViterbi(NodeProbs const& nv) {
EdgeProbs ev;
ComputeEdgeViterbi(nv,&ev);
return ViterbiSortInEdges(ev);
}
namespace {
struct less_ve {
Hypergraph::EdgeProbs const& ev;
//Hypergraph const& hg;
explicit less_ve(Hypergraph::EdgeProbs const& ev/*,Hypergraph const& hg */) : ev(ev)/*,hg(hg)*/ { }
bool operator()(int a,int b) const {
return ev[a] > ev[b];
}
};
}
Hypergraph::Edge const* Hypergraph::ViterbiSortInEdges(EdgeProbs const& ev)
{
for (unsigned i=0;i<nodes_.size();++i) {
EdgesVector &ie=nodes_[i].in_edges_;
std::sort(ie.begin(),ie.end(),less_ve(ev));
}
return first_edge();
}
prob_t Hypergraph::ComputeEdgeViterbi(EdgeProbs *ev) const {
NodeProbs nv;
ComputeNodeViterbi(&nv);
return ComputeEdgeViterbi(nv,ev);
}
prob_t Hypergraph::ComputeEdgeViterbi(NodeProbs const& nv,EdgeProbs *ev) const {
unsigned ne=edges_.size();
ev->resize(ne);
for (unsigned i=0;i<ne;++i) {
Edge const& e=edges_[i];
prob_t r=e.edge_prob_;
TailNodeVector const& t=e.tail_nodes_;
for (TailNodeVector::const_iterator j=t.begin(),jj=t.end();j!=jj;++j)
r*=nv[*j];
/*
for (int j=0;j<e.tail_nodes_.size();++j)
r*=nv[e.tail_nodes_[j]];
*/
(*ev)[i]=r;
}
return nv.empty()?prob_t(0):nv.back();
}
std::string Hypergraph::stats(std::string const& name) const
{
ostringstream o;
o<<name<<" (nodes/edges): "<<nodes_.size()<<'/'<<edges_.size()<<endl;
o<<name<<" (paths): "<<NumberOfPaths()<<endl;
return o.str();
}
double Hypergraph::NumberOfPaths() const {
return Inside<double, TransitionCountWeightFunction>(*this);
}
struct ScaledTransitionEventWeightFunction {
typedef SparseVector<prob_t> Result;
ScaledTransitionEventWeightFunction(double alpha) : scale_(alpha) {}
inline SparseVector<prob_t> operator()(const Hypergraph::Edge& e) const {
SparseVector<prob_t> result;
result.set_value(e.id_, e.edge_prob_.pow(scale_));
return result;
}
const double scale_;
};
// safe to reinterpret a vector of these as a vector of prob_t (plain old data)
struct TropicalValue {
TropicalValue() : v_() {}
TropicalValue(int v) {
if (v == 0) v_ = prob_t::Zero();
else if (v == 1) v_ = prob_t::One();
else { cerr << "Bad value in TropicalValue(int).\n"; abort(); }
}
TropicalValue(unsigned v) : v_(v) {}
TropicalValue(const prob_t& v) : v_(v) {}
// operator prob_t() const { return v_; }
inline TropicalValue& operator+=(const TropicalValue& o) {
if (v_ < o.v_) v_ = o.v_;
return *this;
}
inline TropicalValue& operator*=(const TropicalValue& o) {
v_ *= o.v_;
return *this;
}
inline bool operator==(const TropicalValue& o) const { return v_ == o.v_; }
prob_t v_;
};
struct ViterbiWeightFunction {
typedef TropicalValue Weight;
inline TropicalValue operator()(const Hypergraph::Edge& e) const {
return TropicalValue(e.edge_prob_);
}
};
struct ViterbiTransitionEventWeightFunction {
typedef SparseVector<TropicalValue> Result;
inline SparseVector<TropicalValue> operator()(const Hypergraph::Edge& e) const {
SparseVector<TropicalValue> result;
result.set_value(e.id_, TropicalValue(e.edge_prob_));
return result;
}
};
//TODO: both Compute* methods build sparse vectors with size = whole subhypergraph, for every node. there's no need for that.
prob_t Hypergraph::ComputeEdgePosteriors(double scale, vector<prob_t>* posts) const {
const ScaledEdgeProb weight(scale);
const ScaledTransitionEventWeightFunction w2(scale);
SparseVector<prob_t> pv;
const prob_t inside = InsideOutside<prob_t,
ScaledEdgeProb,
SparseVector<prob_t>,
ScaledTransitionEventWeightFunction>(*this, &pv, weight, w2);
posts->resize(edges_.size());
for (unsigned i = 0; i < edges_.size(); ++i)
(*posts)[i] = prob_t(pv.value(i));
return inside;
}
prob_t Hypergraph::ComputeBestPathThroughEdges(vector<prob_t>* post) const {
// I don't like this - explicitly passing around counts of each edge. It's clever but slow.
SparseVector<TropicalValue> pv;
const TropicalValue viterbi_weight = InsideOutside<TropicalValue,
ViterbiWeightFunction,
SparseVector<TropicalValue>,
ViterbiTransitionEventWeightFunction>(*this, &pv);
post->resize(edges_.size());
for (unsigned i = 0; i < edges_.size(); ++i)
(*post)[i] = pv.value(i).v_;
return viterbi_weight.v_;
}
void Hypergraph::PushWeightsToSource(double scale) {
vector<prob_t> posts;
ComputeEdgePosteriors(scale, &posts);
for (unsigned i = 0; i < nodes_.size(); ++i) {
const Hypergraph::Node& node = nodes_[i];
prob_t z = prob_t::Zero();
for (unsigned j = 0; j < node.out_edges_.size(); ++j)
z += posts[node.out_edges_[j]];
for (unsigned j = 0; j < node.out_edges_.size(); ++j) {
edges_[node.out_edges_[j]].edge_prob_ = posts[node.out_edges_[j]] / z;
}
}
}
namespace {
struct vpusher : public vector<TropicalValue> {
int fid;
vpusher(int fid=0) : fid(fid) { }
void operator()(int n,int /*ei*/,Hypergraph::Edge &e) const {
Hypergraph::TailNodeVector const& t=e.tail_nodes_;
prob_t p=e.edge_prob_;
for (unsigned i=0;i<t.size();++i)
p*=(*this)[t[i]].v_;
e.feature_values_.set_value(fid,log(e.edge_prob_=p/(*this)[n].v_));
}
};
}
prob_t Hypergraph::ComputeNodeViterbi(NodeProbs *np) const
{
return Inside(*this,
reinterpret_cast<std::vector<TropicalValue> *>(np),
ViterbiWeightFunction()).v_;
}
// save pushed weight ot some fid if we want. 0 = don't care
prob_t Hypergraph::PushViterbiWeightsToGoal(int fid) {
vpusher vi(fid);
NodeProbs np;
prob_t r=ComputeNodeViterbi(&np);
visit_edges(vi);
return r;
}
prob_t Hypergraph::PushWeightsToGoal(double scale) {
vector<prob_t> posts;
const prob_t inside_z = ComputeEdgePosteriors(scale, &posts);
for (unsigned i = 0; i < nodes_.size(); ++i) {
const Hypergraph::Node& node = nodes_[i];
prob_t z = prob_t::Zero();
for (unsigned j = 0; j < node.in_edges_.size(); ++j)
z += posts[node.in_edges_[j]];
for (unsigned j = 0; j < node.in_edges_.size(); ++j) {
edges_[node.in_edges_[j]].edge_prob_ = posts[node.in_edges_[j]] / z;
}
}
return inside_z;
}
struct EdgeExistsWeightFunction {
EdgeExistsWeightFunction(const vector<bool>& prunes) : prunes_(prunes) {}
bool operator()(const Hypergraph::Edge& edge) const {
return !prunes_[edge.id_];
}
private:
const vector<bool>& prunes_;
};
void Hypergraph::PruneEdges(const EdgeMask& prune_edge, bool run_inside_algorithm) {
assert(prune_edge.size() == edges_.size());
vector<bool> filtered = prune_edge;
if (run_inside_algorithm) {
const EdgeExistsWeightFunction wf(prune_edge);
vector<Boolean> reachable;
bool goal_derivable = Inside<Boolean, EdgeExistsWeightFunction>(*this, &reachable, wf);
if (!goal_derivable) {
edges_.clear();
nodes_.clear();
nodes_.push_back(Node());
return;
}
assert(reachable.size() == nodes_.size());
for (unsigned i = 0; i < edges_.size(); ++i) {
bool prune = prune_edge[i];
if (!prune) {
const Edge& edge = edges_[i];
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
if (!reachable[edge.tail_nodes_[j]]) {
prune = true;
break;
}
}
}
filtered[i] = prune;
}
}
TopologicallySortNodesAndEdges(nodes_.size() - 1, &filtered);
}
// drop edges w/ max marginal prob less than cutoff. this means that bigger cutoff is stricter.
void Hypergraph::MarginPrune(vector<prob_t> const& io,prob_t cutoff,vector<bool> const* preserve_mask,bool safe_inside,bool verbose)
{
assert(io.size()==edges_.size());
//TODO: //FIXME: if EPSILON is 0, then remnants (useless edges that don't connect to top? or top-connected but not bottom-up buildable referenced?) are left in the hypergraph output that cause mr_vest_map to segfault. adding EPSILON probably just covers up the symptom by making it far less frequent; I imagine any time threshold is set by DensityPrune, cutoff is exactly equal to the io of several nodes, but because of how it's computed, some round slightly down vs. slightly up. probably the flaw is in PruneEdges.
const prob_t creep=abslog(cutoff).pow(1e-6); // some barely >1 (small positive log) ratio. linear in logspace of course // start more permissive, then become less generous. this is barely more than 1. we want to do this because it's a disaster if something lower in a derivation tree is deleted, but the higher thing remains (unless safe_inside)
vector<bool> prune(edges_.size());
if (verbose) {
if (preserve_mask) cerr << preserve_mask->size() << " " << prune.size() << endl;
cerr<<"Finishing prune for "<<prune.size()<<" edges; CUTOFF=" << cutoff << endl;
}
unsigned pc = 0;
for (unsigned i = 0; i < io.size(); ++i) {
cutoff*=creep; // start more permissive, then become less generous. this is barely more than 1. we want to do this because it's a disaster if something lower in a derivation tree is deleted, but the higher thing remains (unless safe_inside)
const bool prune_edge = (io[i] < cutoff);
if (prune_edge) {
++pc;
prune[i] = !(preserve_mask && (*preserve_mask)[i]);
}
}
if (verbose)
cerr << "Finished pruning; removed " << pc << "/" << io.size() << " edges\n";
PruneEdges(prune,safe_inside); // inside reachability check in case cutoff rounded down too much (probably redundant with EPSILON hack)
}
template <class V>
V nth_greatest(int n,vector<V> vs) {
nth_element(vs.begin(),vs.begin()+n,vs.end(),greater<V>());
return vs[n];
}
bool Hypergraph::PruneInsideOutside(double alpha,double density,const EdgeMask* preserve_mask,const bool use_sum_prod_semiring, const double scale,bool safe_inside)
{
bool use_density=density!=0;
bool use_beam=alpha!=0;
assert(!use_beam||alpha>0);
assert(!use_density||density>=1);
assert(!use_sum_prod_semiring||scale>0);
unsigned rnum=edges_.size();
if (use_density) {
const int plen = ViterbiPathLength(*this);
vector<WordID> bp;
rnum = min(rnum, static_cast<unsigned>(density * plen));
if (!SILENT) cerr << "Density pruning: keep "<<rnum<<" of "<<edges_.size()<<" edges (viterbi = "<<plen<<" edges)"<<endl;
if (rnum == edges_.size()) {
if (!SILENT) cerr << "No pruning required: denisty already sufficient\n";
if (!use_beam)
return false;
use_density=false;
}
}
assert(use_density||use_beam);
InsideOutsides<prob_t> io;
OutsideNormalize<prob_t> norm;
if (use_sum_prod_semiring)
io.compute(*this,norm,ScaledEdgeProb(scale));
else
io.compute(*this,norm,ViterbiWeightFunction()); // the storage gets cast to Tropical from prob_t, scary - e.g. w/ specialized static allocator differences it could break.
vector<prob_t> mm;
io.compute_edge_marginals(*this,mm,EdgeProb()); // should be normalized to 1 for best edges in viterbi. in sum, best is less than 1.
prob_t cutoff=prob_t::One(); // we'll destroy everything smaller than this (note: nothing is bigger than 1). so bigger cutoff = more pruning.
bool density_won=false;
if (use_density) {
cutoff=nth_greatest(rnum,mm);
density_won=true;
}
if (use_beam) {
prob_t best=prob_t::One();
if (use_sum_prod_semiring) {
for (unsigned i = 0; i < mm.size(); ++i)
if (mm[i] > best) best = mm[i];
}
prob_t beam_cut=best*prob_t::exp(-alpha);
if (!(use_density&&cutoff>beam_cut)) {
density_won=false;
cutoff=beam_cut;
}
}
MarginPrune(mm,cutoff,preserve_mask,safe_inside);
return density_won;
}
void Hypergraph::PrintGraphviz() const {
int ei = 0;
cerr << "digraph G {\n rankdir=LR;\n nodesep=.05;\n";
for (const auto& edge : edges_) {
++ei;
static const string none = "<null>";
string rule = (edge.rule_ ? edge.rule_->AsString(false) : none);
cerr << " A_" << ei << " [label=\"" << rule << " p=" << edge.edge_prob_
<< " F:" << edge.feature_values_
<< "\" shape=\"rect\"];\n";
Hypergraph::TailNodeVector indorder(edge.tail_nodes_.size(), 0);
int ntc = 0;
for (unsigned i = 0; i < edge.rule_->e_.size(); ++i) {
if (edge.rule_->e_[i] <= 0) indorder[ntc++] = 1 + (-1 * edge.rule_->e_[i]);
}
for (unsigned i = 0; i < edge.tail_nodes_.size(); ++i) {
cerr << " " << edge.tail_nodes_[i] << " -> A_" << ei;
if (edge.tail_nodes_.size() > 1) {
cerr << " [label=\"" << indorder[i] << "\"]";
}
cerr << ";\n";
}
cerr << " A_" << ei << " -> " << edge.head_node_ << ";\n";
}
for (const auto& node : nodes_) {
cerr << " " << node.id_ << "[label=\"" << (node.cat_ < 0 ? TD::Convert(node.cat_ * -1) : "")
<< " n=" << node.id_
<< " h=" << node.node_hash
<< "\"];\n";
}
cerr << "}\n";
}
void Hypergraph::Union(const Hypergraph& other) {
if (&other == this) return;
if (nodes_.empty()) { nodes_ = other.nodes_; edges_ = other.edges_; return; }
unsigned noff = nodes_.size();
unsigned eoff = edges_.size();
int ogoal = other.nodes_.size() - 1;
int cgoal = noff - 1;
// keep a single goal node, so add nodes.size - 1
nodes_.resize(nodes_.size() + ogoal);
// add all edges
edges_.resize(edges_.size() + other.edges_.size());
for (int i = 0; i < ogoal; ++i) {
const Node& on = other.nodes_[i];
Node& cn = nodes_[i + noff];
cn.id_ = i + noff;
cn.in_edges_.resize(on.in_edges_.size());
for (unsigned j = 0; j < on.in_edges_.size(); ++j)
cn.in_edges_[j] = on.in_edges_[j] + eoff;
cn.out_edges_.resize(on.out_edges_.size());
for (unsigned j = 0; j < on.out_edges_.size(); ++j)
cn.out_edges_[j] = on.out_edges_[j] + eoff;
}
for (unsigned i = 0; i < other.edges_.size(); ++i) {
const Edge& oe = other.edges_[i];
Edge& ce = edges_[i + eoff];
ce.id_ = i + eoff;
ce.rule_ = oe.rule_;
ce.feature_values_ = oe.feature_values_;
if (oe.head_node_ == ogoal) {
ce.head_node_ = cgoal;
nodes_[cgoal].in_edges_.push_back(ce.id_);
} else {
ce.head_node_ = oe.head_node_ + noff;
}
ce.tail_nodes_.resize(oe.tail_nodes_.size());
for (unsigned j = 0; j < oe.tail_nodes_.size(); ++j)
ce.tail_nodes_[j] = oe.tail_nodes_[j] + noff;
}
TopologicallySortNodesAndEdges(cgoal);
}
void Hypergraph::PruneUnreachable(int goal_node_id) {
TopologicallySortNodesAndEdges(goal_node_id, NULL);
}
struct DFSContext {
int node;
int edge_iter;
int tail_iter;
DFSContext(int n, int e, int t) : node(n), edge_iter(e), tail_iter(t) {}
};
enum ColorType { WHITE, GRAY, BLACK };
template <class T>
struct BadId {
bool operator()(const T& obj) const { return obj.id_ == -1; }
};
template <class T>
struct IdCompare {
bool operator()(const T& a, const T& b) { return a.id_ < b.id_; }
};
// this keeps the nodes' edge indices and edges' node indices in sync. or do nodes not get removed when you prune_edges? seems like they get reordered.
//TODO: if you had parallel arrays associating data w/ each node or edge, you'd want access to reloc_node and reloc_edge - expose in stateful object?
void Hypergraph::TopologicallySortNodesAndEdges(int goal_index,
const vector<bool>* prune_edges) {
edges_topo_=true;
// figure out which nodes are reachable from the goal
vector<int> reloc_node(nodes_.size(), -1);
vector<int> reloc_edge(edges_.size(), -1);
vector<ColorType> color(nodes_.size(), WHITE);
vector<DFSContext> stack;
stack.reserve(nodes_.size());
stack.push_back(DFSContext(goal_index, 0, 0));
int node_count = 0;
int edge_count = 0;
while(!stack.empty()) {
const DFSContext& p = stack.back();
int cur_ni = p.node;
int edge_i = p.edge_iter;
int tail_i = p.tail_iter;
stack.pop_back();
const Node* cur_node = &nodes_[cur_ni];
int edge_end = cur_node->in_edges_.size();
while (edge_i != edge_end) {
const Edge& cur_edge = edges_[cur_node->in_edges_[edge_i]];
const int tail_end = cur_edge.tail_nodes_.size();
if ((tail_end == tail_i) || (prune_edges && (*prune_edges)[cur_edge.id_])) {
++edge_i;
tail_i = 0;
continue;
}
const int tail_ni = cur_edge.tail_nodes_[tail_i];
const int tail_color = color[tail_ni];
if (tail_color == WHITE) {
stack.push_back(DFSContext(cur_ni, edge_i, ++tail_i));
cur_ni = tail_ni;
cur_node = &nodes_[cur_ni];
color[cur_ni] = GRAY;
edge_i = 0;
edge_end = cur_node->in_edges_.size();
tail_i = 0;
} else if (tail_color == BLACK) {
++tail_i;
} else if (tail_color == GRAY) {
// this can happen if, e.g., it is possible to rederive
// a single cell in the CKY chart via a cycle.
cerr << "Detected forbidden cycle in HG:\n";
cerr << " " << cur_edge.rule_->AsString() << endl;
while(!stack.empty()) {
const DFSContext& p = stack.back();
cerr << " " << edges_[nodes_[p.node].in_edges_[p.edge_iter]].rule_->AsString() << endl;
stack.pop_back();
}
abort();
}
}
color[cur_ni] = BLACK;
reloc_node[cur_ni] = node_count++;
if (prune_edges) {
for (int i = 0; i < edge_end; ++i) {
int ei = cur_node->in_edges_[i];
if (!(*prune_edges)[ei])
reloc_edge[cur_node->in_edges_[i]] = edge_count++;
}
} else {
for (int i = 0; i < edge_end; ++i)
reloc_edge[cur_node->in_edges_[i]] = edge_count++;
}
}
#ifndef HG_EDGES_TOPO_SORTED
int ec = 0;
for (unsigned i = 0; i < reloc_edge.size(); ++i) {
int& cp = reloc_edge[i];
if (cp >= 0) { cp = ec++; }
}
#endif
#if 0
cerr << "TOPO:";
for (int i = 0; i < reloc_node.size(); ++i)
cerr << " " << reloc_node[i];
cerr << endl;
cerr << "EDGE:";
for (int i = 0; i < reloc_edge.size(); ++i)
cerr << " " << reloc_edge[i];
cerr << endl;
#endif
bool no_op = true;
for (unsigned i = 0; i < reloc_node.size() && no_op; ++i)
if (reloc_node[i] != static_cast<int>(i)) no_op = false;
for (unsigned i = 0; i < reloc_edge.size() && no_op; ++i)
if (reloc_edge[i] != static_cast<int>(i)) no_op = false;
if (no_op) return;
for (unsigned i = 0; i < reloc_node.size(); ++i) {
Node& node = nodes_[i];
node.id_ = reloc_node[i];
int c = 0;
for (unsigned j = 0; j < node.in_edges_.size(); ++j) {
const int new_index = reloc_edge[node.in_edges_[j]];
if (new_index >= 0)
node.in_edges_[c++] = new_index;
}
node.in_edges_.resize(c);
c = 0;
for (unsigned j = 0; j < node.out_edges_.size(); ++j) {
const int new_index = reloc_edge[node.out_edges_[j]];
if (new_index >= 0)
node.out_edges_[c++] = new_index;
}
node.out_edges_.resize(c);
}
for (unsigned i = 0; i < reloc_edge.size(); ++i) {
Edge& edge = edges_[i];
edge.id_ = reloc_edge[i];
edge.head_node_ = reloc_node[edge.head_node_];
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j)
edge.tail_nodes_[j] = reloc_node[edge.tail_nodes_[j]];
}
edges_.erase(remove_if(edges_.begin(), edges_.end(), BadId<Edge>()), edges_.end());
nodes_.erase(remove_if(nodes_.begin(), nodes_.end(), BadId<Node>()), nodes_.end());
sort(nodes_.begin(), nodes_.end(), IdCompare<Node>());
#ifndef HG_EDGES_TOPO_SORTED
sort(edges_.begin(), edges_.end(), IdCompare<Edge>());
#endif
}
struct EdgeWeightSorter {
const Hypergraph& hg;
EdgeWeightSorter(const Hypergraph& h) : hg(h) {}
bool operator()(int a, int b) const {
return hg.edges_[a].edge_prob_ > hg.edges_[b].edge_prob_;
}
};
/*
void Hypergraph::SortInEdgesByEdgeWeights() {
for (int i = 0; i < nodes_.size(); ++i) {
Node& node = nodes_[i];
sort(node.in_edges_.begin(), node.in_edges_.end(), EdgeWeightSorter(*this));
}
}
*/
std::string Hypergraph::show_first_tree(bool indent,int show_mask,int maxdepth,int depth) const {
EdgeHandle fe=first_edge();
return fe ? fe->derivation_tree(*this,fe,indent,show_mask,maxdepth,depth) : "";
}
std::string Hypergraph::show_viterbi_tree(bool indent,int show_mask,int maxdepth,int depth) const {
HypergraphP v=CreateViterbiHypergraph();
// cerr<<viterbi_stats(*v,"debug show_viterbi_tree",true,true,false)<<endl;
return v->show_first_tree(indent,show_mask,maxdepth,depth);
}
HypergraphP Hypergraph::CreateEdgeSubset(EdgeMask &keep_edges) const {
NodeMask kn;
return CreateEdgeSubset(keep_edges,kn);
}
HypergraphP Hypergraph::CreateEdgeSubset(EdgeMask &keep_edges,NodeMask &kn) const {
kn.clear();
kn.resize(nodes_.size());
for (unsigned n=0;n<nodes_.size();++n) { // this nested iteration gives us edges in topo order too
EdgesVector const& es=nodes_[n].in_edges_;
for (unsigned i=0;i<es.size();++i) {
int ei=es[i];
if (keep_edges[ei]) {
const Edge& e = edges_[ei];
TailNodeVector const& tails=e.tail_nodes_;
for (unsigned j=0;j<e.tail_nodes_.size();++j) {
if (!kn[tails[j]]) {
keep_edges[ei]=false;
goto next_edge;
}
}
kn[e.head_node_]=true;
}
next_edge: ;
}
}
return CreateNodeEdgeSubset(kn,keep_edges);
}
HypergraphP Hypergraph::CreateNodeEdgeSubset(NodeMask const& keep_nodes,EdgeMask const&keep_edges) const {
indices_after n2(keep_nodes);
indices_after e2(keep_edges);
HypergraphP ret(new Hypergraph(n2.n_kept, e2.n_kept, is_linear_chain_));
Nodes &rn=ret->nodes_;
for (unsigned i=0;i<nodes_.size();++i)
if (n2.keeping(i))
rn[n2[i]].copy_reindex(nodes_[i],n2,e2);
Edges &re=ret->edges_;
for (unsigned i=0;i<edges_.size();++i)
if (e2.keeping(i))
re[e2[i]].copy_reindex(edges_[i],n2,e2);
return ret;
}
void Hypergraph::TightenEdgeMask(EdgeMask &ke,NodeMask const& kn) const
{
for (unsigned i = 0; i < edges_.size(); ++i) {
if (ke[i]) {
const Edge& edge = edges_[i];
TailNodeVector const& tails=edge.tail_nodes_;
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
if (!kn[tails[j]]) {
ke[i]=false;
goto next_edge;
}
}
}
next_edge:;
}
}
void Hypergraph::set_ids() {
for (unsigned i = 0; i < edges_.size(); ++i)
edges_[i].id_=i;
for (unsigned i = 0; i < nodes_.size(); ++i)
nodes_[i].id_=i;
}
void Hypergraph::check_ids() const
{
for (unsigned i = 0; i < edges_.size(); ++i)
assert(edges_[i].id_==static_cast<int>(i));
for (unsigned i = 0; i < nodes_.size(); ++i)
assert(nodes_[i].id_==static_cast<int>(i));
}
HypergraphP Hypergraph::CreateViterbiHypergraph(const vector<bool>* edges) const {
typedef ViterbiPathTraversal::Result VE;
VE vit_edges;
if (edges) {
assert(edges->size() == edges_.size());
Viterbi(*this, &vit_edges, ViterbiPathTraversal(), EdgeSelectEdgeWeightFunction(*edges));
} else {
Viterbi(*this, &vit_edges, ViterbiPathTraversal() ,EdgeProb());
}
#if 1
# if 1
check_ids();
# else
set_ids();
# endif
EdgeMask used(edges_.size());
for (unsigned i = 0; i < vit_edges.size(); ++i)
used[vit_edges[i]->id_]=true;
return CreateEdgeSubset(used);
#else
map<int, int> old2new_node;
int num_new_nodes = 0;
for (unsigned i = 0; i < vit_edges.size(); ++i) {
const Edge& edge = *vit_edges[i];
for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) assert(old2new_node.count(edge.tail_nodes_[j]) > 0);
if (old2new_node.count(edge.head_node_) == 0) {
old2new_node[edge.head_node_] = num_new_nodes;
++num_new_nodes;
}
}
HypergraphP ret(new Hypergraph(num_new_nodes, vit_edges.size(), is_linear_chain_));
Hypergraph* out = ret.get();
for (map<int, int>::iterator it = old2new_node.begin();
it != old2new_node.end(); ++it) {
const Node& old_node = nodes_[it->first];
Node& new_node = out->nodes_[it->second];
new_node.cat_ = old_node.cat_;
new_node.id_ = it->second;
}
for (unsigned i = 0; i < vit_edges.size(); ++i) {
const Edge& old_edge = *vit_edges[i];
Edge& new_edge = out->edges_[i];
new_edge = old_edge;
new_edge.id_ = i;
const int new_head_node = old2new_node[old_edge.head_node_];
new_edge.head_node_ = new_head_node;
out->nodes_[new_head_node].in_edges_.push_back(i);
for (unsigned j = 0; j < old_edge.tail_nodes_.size(); ++j) {
const int new_tail_node = old2new_node[old_edge.tail_nodes_[j]];
new_edge.tail_nodes_[j] = new_tail_node;
out->nodes_[new_tail_node].out_edges_.push_back(i);
}
}
return ret;
#endif
}
|