1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
#include "ffset.h"
#include "ff.h"
#include "tdict.h"
#include "hg.h"
using namespace std;
ModelSet::ModelSet(const vector<double>& w, const vector<const FeatureFunction*>& models) :
models_(models),
weights_(w),
state_size_(0),
model_state_pos_(models.size()) {
for (int i = 0; i < models_.size(); ++i) {
model_state_pos_[i] = state_size_;
state_size_ += models_[i]->StateSize();
}
}
void ModelSet::PrepareForInput(const SentenceMetadata& smeta) {
for (int i = 0; i < models_.size(); ++i)
const_cast<FeatureFunction*>(models_[i])->PrepareForInput(smeta);
}
void ModelSet::AddFeaturesToEdge(const SentenceMetadata& smeta,
const Hypergraph& /* hg */,
const FFStates& node_states,
HG::Edge* edge,
FFState* context,
prob_t* combination_cost_estimate) const {
//edge->reset_info();
context->resize(state_size_);
if (state_size_ > 0) {
memset(&(*context)[0], 0, state_size_);
}
SparseVector<double> est_vals; // only computed if combination_cost_estimate is non-NULL
if (combination_cost_estimate) *combination_cost_estimate = prob_t::One();
for (int i = 0; i < models_.size(); ++i) {
const FeatureFunction& ff = *models_[i];
void* cur_ff_context = NULL;
vector<const void*> ants(edge->tail_nodes_.size());
bool has_context = ff.StateSize() > 0;
if (has_context) {
int spos = model_state_pos_[i];
cur_ff_context = &(*context)[spos];
for (int i = 0; i < ants.size(); ++i) {
ants[i] = &node_states[edge->tail_nodes_[i]][spos];
}
}
ff.TraversalFeatures(smeta, *edge, ants, &edge->feature_values_, &est_vals, cur_ff_context);
}
if (combination_cost_estimate)
combination_cost_estimate->logeq(est_vals.dot(weights_));
edge->edge_prob_.logeq(edge->feature_values_.dot(weights_));
}
void ModelSet::AddFinalFeatures(const FFState& state, HG::Edge* edge,SentenceMetadata const& smeta) const {
assert(1 == edge->rule_->Arity());
//edge->reset_info();
for (int i = 0; i < models_.size(); ++i) {
const FeatureFunction& ff = *models_[i];
const void* ant_state = NULL;
bool has_context = ff.StateSize() > 0;
if (has_context) {
int spos = model_state_pos_[i];
ant_state = &state[spos];
}
ff.FinalTraversalFeatures(ant_state, &edge->feature_values_);
}
edge->edge_prob_.logeq(edge->feature_values_.dot(weights_));
}
|