1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
#include "cfg.h"
#include "hg.h"
#include "cfg_format.h"
#include "cfg_binarize.h"
#include "hash.h"
#include "batched_append.h"
#include <limits>
#include "fast_lexical_cast.hpp"
//#include "indices_after.h"
#include "show.h"
#include "null_traits.h"
#define DUNIQ(x) x
#define DBIN(x)
#define DSP(x) x
//SP:binarize by splitting.
#define DCFG(x) IF_CFG_DEBUG(x)
#undef CFG_FOR_RULES
#define CFG_FOR_RULES(i,expr) \
for (CFG::NTs::const_iterator n=nts.begin(),nn=nts.end();n!=nn;++n) { \
NT const& nt=*n; \
for (CFG::Ruleids::const_iterator ir=nt.ruleids.begin(),er=nt.ruleids.end();ir!=er;++ir) { \
RuleHandle i=*ir; \
expr; \
} \
}
using namespace std;
typedef CFG::Rule Rule;
typedef CFG::NTOrder NTOrder;
typedef CFG::RHS RHS;
typedef CFG::BinRhs BinRhs;
/////index ruleids:
void CFG::UnindexRules() {
for (NTs::iterator n=nts.begin(),nn=nts.end();n!=nn;++n)
n->ruleids.clear();
}
void CFG::ReindexRules() {
UnindexRules();
for (int i=0,e=rules.size();i<e;++i)
if (!rules[i].is_null())
nts[rules[i].lhs].ruleids.push_back(i);
}
//////topo order:
namespace {
typedef std::vector<char> Seen; // 0 = unseen, 1 = seen+finished, 2 = open (for cycle detection; seen but not finished)
enum { UNSEEN=0,SEEN,OPEN };
// bottom -> top topo order (rev head->tails topo)
template <class OutOrder>
struct CFGTopo {
// meaningless efficiency alternative: close over all the args except ni - so they're passed as a single pointer. also makes visiting tail_nts simpler.
CFG const& cfg;
OutOrder outorder;
std::ostream *cerrp;
CFGTopo(CFG const& cfg,OutOrder const& outorder,std::ostream *cerrp=&std::cerr)
: cfg(cfg),outorder(outorder),cerrp(cerrp) // closure over args
, seen(cfg.nts.size()) { }
Seen seen;
void operator()(CFG::NTHandle ni) {
char &seenthis=seen[ni];
if (seenthis==UNSEEN) {
seenthis=OPEN;
CFG::NT const& nt=cfg.nts[ni];
for (CFG::Ruleids::const_iterator i=nt.ruleids.begin(),e=nt.ruleids.end();i!=e;++i) {
Rule const& r=cfg.rules[*i];
r.visit_rhs_nts(*this); // recurse.
}
*outorder++=ni; // dfs finishing time order = reverse topo.
seenthis=SEEN;
} else if (cerrp && seenthis==OPEN) {
std::ostream &cerr=*cerrp;
cerr<<"WARNING: CFG Topo order attempt failed: NT ";
cfg.print_nt_name(cerr,ni);
cerr<<" already reached from goal(top) ";
cfg.print_nt_name(cerr,cfg.goal_nt);
cerr<<". Continuing to reorder, but it's not fully topological.\n";
}
}
};
template <class O>
void DoCFGTopo(CFG const& cfg,CFG::NTHandle goal,O const& o,std::ostream *w=0) {
CFGTopo<O> ct(cfg,o,w);
ct(goal);
}
}//ns
// you would need to do this only if you didn't build from hg, or you Binarize without bin_topo option. note: this doesn't sort the list of rules; it's assumed that if you care about the topo order you'll iterate over nodes.
void CFG::OrderNTsTopo(NTOrder *o_,std::ostream *cycle_complain) {
NTOrder &o=*o_;
o.resize(nts.size());
DoCFGTopo(*this,goal_nt,o.begin(),cycle_complain);
}
/////sort/uniq:
namespace {
RHS null_rhs(1,INT_MIN);
//sort
struct ruleid_best_first {
CFG::Rules const* rulesp;
bool operator()(int a,int b) const { // true if a >(prob for ruleid) b
return (*rulesp)[b].p < (*rulesp)[a].p;
}
};
//uniq
struct prob_pos {
prob_pos() {}
prob_pos(prob_t prob,int pos) : prob(prob),pos(pos) {}
prob_t prob;
int pos;
bool operator <(prob_pos const& o) const { return prob<o.prob; }
};
}//ns
int CFG::UniqRules(NTHandle ni) {
typedef HASH_MAP<RHS,prob_pos,boost::hash<RHS> > BestRHS; // faster to use trie? maybe.
BestRHS bestp; // once inserted, the position part (output index) never changes. but the prob may be improved (overwrite ruleid at that position).
HASH_MAP_EMPTY(bestp,null_rhs);
Ruleids &adj=nts[ni].ruleids;
Ruleids oldadj=adj;
int newpos=0;
for (int i=0,e=oldadj.size();i!=e;++i) { // this beautiful complexity is to ensure that adj' is a subsequence of adj (without duplicates)
int ri=oldadj[i];
Rule const& r=rules[ri];
prob_pos pi(r.p,newpos);
prob_pos &oldpi=get_default(bestp,r.rhs,pi);
if (oldpi.pos==newpos) {// newly inserted
adj[newpos++]=ri;
} else {
SHOWP(DUNIQ,"Uniq duplicate: ") SHOW4(DUNIQ,oldpi.prob,pi.prob,oldpi.pos,newpos);
SHOW(DUNIQ,ShowRule(ri));
SHOW(DUNIQ,ShowRule(adj[oldpi.pos]));
if (oldpi.prob<pi.prob) { // we improve prev. best (overwrite it @old pos)
oldpi.prob=pi.prob;
adj[oldpi.pos]=ri; // replace worse rule w/ better
}
}
}
// post: newpos = number of new adj
adj.resize(newpos);
return newpos;
}
void CFG::SortLocalBestFirst(NTHandle ni) {
ruleid_best_first r;
r.rulesp=&rules;
Ruleids &adj=nts[ni].ruleids;
std::stable_sort(adj.begin(),adj.end(),r);
}
/////binarization:
namespace {
BinRhs null_bin_rhs(std::numeric_limits<int>::min(),std::numeric_limits<int>::min());
// index i >= N.size()? then it's in M[i-N.size()]
//WordID first,WordID second,
string BinStr(BinRhs const& b,CFG::NTs const& N,CFG::NTs const& M)
{
int nn=N.size();
ostringstream o;
#undef BinNameOWORD
#define BinNameOWORD(w) \
do { \
int n=w; if (n>0) o << TD::Convert(n); \
else { \
int i=-n; \
if (i<nn) o<<N[i].from<<i; else o<<M[i-nn].from; \
} \
} while(0)
BinNameOWORD(b.first);
o<<'+';
BinNameOWORD(b.second);
return o.str();
}
string BinStr(RHS const& r,CFG::NTs const& N,CFG::NTs const& M)
{
int nn=N.size();
ostringstream o;
for (int i=0,e=r.size();i!=e;++i) {
if (i)
o<<'+';
BinNameOWORD(r[i]);
}
return o.str();
}
WordID BinName(BinRhs const& b,CFG::NTs const& N,CFG::NTs const& M)
{
return TD::Convert(BinStr(b,N,M));
}
WordID BinName(RHS const& b,CFG::NTs const& N,CFG::NTs const& M)
{
return TD::Convert(BinStr(b,N,M));
}
/*
template <class Rhs>
struct null_for;
template <>
struct null_for<BinRhs> {
static BinRhs null;
};
template <>
struct null_for<RHS> {
static RHS null;
};
*/
template <>
BinRhs null_traits<BinRhs>::null(std::numeric_limits<int>::min(),std::numeric_limits<int>::min());
template <>
RHS null_traits<RHS>::null(1,std::numeric_limits<int>::min());
template <class Rhs>
struct add_virtual_rules {
typedef CFG::RuleHandle RuleHandle;
typedef CFG::NTHandle NTHandle;
CFG::NTs &nts,new_nts;
CFG::Rules &rules, new_rules;
// above will be appended at the end, so we don't have to worry about iterator invalidation
WordID newnt; //negative of NTHandle, or positive => unary lexical item (not to binarize). fit for rhs of a rule
RuleHandle newruleid;
typedef HASH_MAP<Rhs,WordID,boost::hash<Rhs> > R2L;
R2L rhs2lhs; // an rhs maps to this -virtntid, or original id if length 1
bool name_nts;
add_virtual_rules(CFG &cfg,bool name_nts=false) : nts(cfg.nts),rules(cfg.rules),newnt(-nts.size()),newruleid(rules.size()),name_nts(name_nts) {
HASH_MAP_EMPTY(rhs2lhs,null_traits<Rhs>::null);
}
NTHandle get_virt(Rhs const& r) {
NTHandle nt=get_default(rhs2lhs,r,newnt);
SHOW(DBIN,newnt) SHOWP(DBIN,"bin="<<BinStr(r,nts,new_nts)<<"=>") SHOW(DBIN,nt);
if (newnt==nt) {
create(r);
}
return nt;
}
inline void set_nt_name(Rhs const& r) {
if (name_nts)
new_nts.back().from.nt=BinName(r,nts,new_nts);
}
inline void create_nt(Rhs const& rhs) {
new_nts.push_back(CFG::NT(newruleid++));
set_nt_name(rhs);
}
inline void create_rule(Rhs const& rhs) {
new_rules.push_back(CFG::Rule(-newnt,rhs));
--newnt;
}
inline void create_adding(Rhs const& rhs) {
NTHandle nt=get_default(rhs2lhs,rhs,newnt);
assert(nt==newnt);
create(rhs);
}
inline void create(Rhs const& rhs) {
SHOWP(DSP,"Create ") SHOW3(DSP,newnt,newruleid,BinStr(rhs,nts,new_nts))
create_nt(rhs);
create_rule(rhs);
assert(newruleid==rules.size()+new_rules.size());assert(-newnt==nts.size()+new_nts.size());
}
~add_virtual_rules() {
append_rules();
}
void append_rules() {
// marginally more efficient
batched_append_swap(nts,new_nts);
batched_append_swap(rules,new_rules);
}
inline bool have(Rhs const& rhs,NTHandle &h) const {
if (rhs.size()==1) { // stop creating virtual unary rules.
h=rhs[0];
return true;
}
typename R2L::const_iterator i=rhs2lhs.find(rhs);
if (i==rhs2lhs.end())
return false;
h=i->second;
return true;
}
//HACK: prevent this for instantiating for BinRhs. we need to use rule index because we'll be adding rules before we can update.
// returns 1 per replaced NT (0,1, or 2)
inline std::string Str(Rhs const& rhs) const {
return BinStr(rhs,nts,new_nts);
}
template <class RHSi>
int split_rhs(RHSi &rhs,bool only_free=false,bool only_reusing_1=false) {
typedef WordID const* WP;
//TODO: don't actually build substrings of rhs; define key type that stores ref to rhs in new_nts by index (because it may grow), and also allows an int* [b,e) range to serve as key (i.e. don't insert the latter type of key).
int n=rhs.size();
if (n<=2) return 0;
int longest1=1; // all this other stuff is not uninitialized when used, based on checking this and other things (it's complicated, learn to prove theorems, gcc)
int mid=n/2;
int best_k;
enum {HAVE_L=-1,HAVE_NONE=0,HAVE_R=1};
int have1=HAVE_NONE; // will mean we already have some >1 length prefix or suffix as a virt. (it's free). if we have both we use it immediately and return.
NTHandle ntr,ntl;
NTHandle bestntr,bestntl;
WP b=&rhs.front(),e=b+n;
WP wk=b;
SHOWM3(DSP,"Split",Str(rhs),only_free,only_reusing_1);
int rlen=n;
for (int k=1;k<n-1;++k) {
//TODO: handle length 1 l and r parts without explicitly building Rhs?
++wk; assert(k==wk-b);
--rlen; assert(rlen==n-k);
Rhs l(b,wk);
if (have(l,ntl)) {
if (k>1) { SHOWM3(DSP,"Have l",k,n,Str(l)) }
Rhs r(wk,e);
if (have(r,ntr)) {
SHOWM3(DSP,"Have r too",k,n,Str(r))
rhs.resize(2);
rhs[0]=ntl;
rhs[1]=ntr;
return 2;
} else if (k>longest1) {
longest1=k;
have1=HAVE_L;
bestntl=ntl;
best_k=k;
}
} else if (rlen>longest1) { // > or >= favors l or r branching, maybe. who cares.
Rhs r(wk,e);
if (have(r,ntr)) {
longest1=rlen;
if (rlen>1) { SHOWM3(DSP,"Have r (only) ",k,n,Str(r)) }
have1=HAVE_R;
bestntr=ntr;
best_k=k;
}
}
//TODO: swap order of consideration (l first or r?) depending on pre/post midpoint? one will be useless to check for beating the longest single match so far. check that second
}
// now we know how we're going to split the rule; what follows is just doing the actual splitting:
if (only_free) {
if (have1==HAVE_NONE)
return 0;
if (have1==HAVE_L) {
rhs.erase(rhs.begin()+1,rhs.begin()+best_k); //erase [1..best_k)
rhs[0]=bestntl;
} else {
assert(have1==HAVE_R);
rhs.erase(rhs.begin()+best_k+1,rhs.end()); // erase (best_k..)
rhs[best_k]=bestntr;
}
return 1;
}
/* now we have to add some new virtual rules.
some awkward constraints:
1. can't resize rhs until you save copy of l or r split portion
2. can't create new rule until you finished modifying rhs (this is why we store newnt then create). due to vector push_back invalidation. perhaps we could bypass this by reserving sufficient space first before a splitting pass (# rules and nts created is <= 2 * # of rules being passed over)
*/
if (have1==HAVE_NONE) { // default: split down middle.
DSP(assert(longest1==1));
WP m=b+mid;
if (n%2==0) {
WP i=b;
WP j=m;
for (;i!=m;++i,++j)
if (*i!=*j) goto notleqr;
// [...mid]==[mid...]!
RHS l(b,m); // 1. // this is equal to RHS(m,e).
rhs.resize(2);
rhs[0]=rhs[1]=newnt; //2.
create_adding(l);
return 1; // only had to create 1 total when splitting down middle when l==r
}
notleqr:
if (only_reusing_1) return 0;
best_k=mid; // rounds down
if (mid==1) {
RHS r(m,e); //1.
rhs.resize(2);
rhs[1]=newnt; //2.
create_adding(r);
return 1;
} else {
Rhs l(b,m);
Rhs r(m,e); // 1.
rhs.resize(2);
rhs[0]=newnt;
rhs[1]=newnt-1; // 2.
create_adding(l);
create_adding(r);
return 2;
}
}
WP best_wk=b+best_k;
//we build these first because adding rules may invalidate the underlying pointers (we end up binarizing already split virt rules)!.
//wow, that decision (not to use index into new_nts instead of pointer to rhs), while adding new nts to it really added some pain.
if (have1==HAVE_L) {
Rhs r(best_wk,e); //1.
rhs.resize(2);
rhs[0]=bestntl;
DSP(assert(best_wk<e-1)); // because we would have returned having both if rhs was singleton
rhs[1]=newnt; //2.
create_adding(r);
} else {
DSP(assert(have1==HAVE_R));
DSP(assert(best_wk>b+1)); // because we would have returned having both if lhs was singleton
Rhs l(b,best_wk); //1.
rhs.resize(2);
rhs[0]=newnt; //2.
rhs[1]=bestntr;
create_adding(l);
}
return 1;
}
};
}//ns
void CFG::BinarizeSplit(CFGBinarize const& b) {
add_virtual_rules<RHS> v(*this,b.bin_name_nts);
CFG_FOR_RULES(i,v.split_rhs(rules[i].rhs,false,false));
Rules &newr=v.new_rules;
#undef CFG_FOR_VIRT
#define CFG_FOR_VIRT(r,expr) \
for (int i=0,e=newr.size();i<e;++i) { \
Rule &r=newr[i];expr; } // NOTE: must use indices since we'll be adding rules as we iterate.
int n_changed_total=0;
int n_changed=0; // quiets a warning
#define CFG_SPLIT_PASS(N,free,just1) \
for (int pass=0;pass<b.N;++pass) { \
n_changed=0; \
CFG_FOR_VIRT(r,n_changed+=v.split_rhs(r.rhs,free,just1)); \
if (!n_changed) { \
break; \
} n_changed_total+=n_changed; }
CFG_SPLIT_PASS(split_passes,false,false)
if (n_changed==0) return;
CFG_SPLIT_PASS(split_share1_passes,false,true)
CFG_SPLIT_PASS(split_free_passes,true,false)
}
void CFG::Binarize(CFGBinarize const& b) {
if (!b.Binarizing()) return;
cerr << "Binarizing "<<b<<endl;
if (b.bin_thresh>0)
BinarizeThresh(b);
if (b.bin_split)
BinarizeSplit(b);
if (b.bin_l2r)
BinarizeL2R(false,b.bin_name_nts);
if (b.bin_topo) //TODO: more efficient (at least for l2r) maintenance of order?
OrderNTsTopo();
}
namespace {
}
void CFG::BinarizeThresh(CFGBinarize const& b) {
throw runtime_error("TODO: some fancy linked list thing - see NOTES.partial.binarize");
}
void CFG::BinarizeL2R(bool bin_unary,bool name) {
add_virtual_rules<BinRhs> v(*this,name);
cerr << "Binarizing left->right " << (bin_unary?"real to unary":"stop at binary") <<endl;
HASH_MAP<BinRhs,NTHandle,boost::hash<BinRhs> > bin2lhs; // we're going to hash cons rather than build an explicit trie from right to left.
HASH_MAP_EMPTY(bin2lhs,null_bin_rhs);
// iterate using indices and not iterators because we'll be adding to both nts and rules list? we could instead pessimistically reserve space for both, but this is simpler. also: store original end of nts since we won't need to reprocess newly added ones.
int rhsmin=bin_unary?0:1;
//NTs new_nts;
//Rules new_rules;
//TODO: this could be factored easily into in-place (append to new_* like below) and functional (nondestructive copy) versions (copy orig to target and append to target)
// int newnt=nts.size(); // we're going to store binary rhs with -nt to keep distinct from words (>=0)
// int newruleid=rules.size();
BinRhs bin;
CFG_FOR_RULES(ruleid,
/* for (NTs::const_iterator n=nts.begin(),nn=nts.end();n!=nn;++n) {
NT const& nt=*n;
for (Ruleids::const_iterator ir=nt.ruleids.begin(),er=nt.ruleids.end();ir!=er;++ir) {
RuleHandle ruleid=*ir;*/
// SHOW2(DBIN,ruleid,ShowRule(ruleid));
Rule & rule=rules[ruleid];
RHS &rhs=rule.rhs; // we're going to binarize this while adding newly created rules to new_...
if (rhs.empty()) continue;
int r=rhs.size()-2; // loop below: [r,r+1) is to be reduced into a (maybe new) binary NT
if (rhsmin<=r) { // means r>=0 also
bin.second=rhs[r+1];
int bin_to; // the replacement for bin
// assert(newruleid==rules.size()+new_rules.size());assert(newnt==nts.size()+new_nts.size());
// also true at start/end of loop:
for (;;) { // pairs from right to left (normally we leave the last pair alone)
bin.first=rhs[r];
bin_to=v.get_virt(bin);
/* bin_to=get_default(bin2lhs,bin,v.newnt);
// SHOW(DBIN,r) SHOW(DBIN,newnt) SHOWP(DBIN,"bin="<<BinStr(bin,nts,new_nts)<<"=>") SHOW(DBIN,bin_to);
if (v.newnt==bin_to) { // it's new!
new_nts.push_back(NT(newruleid++));
//now newnt is the index of the last (after new_nts is appended) nt. bin is its rhs. bin_to is its lhs
new_rules.push_back(Rule(newnt,bin));
++newnt;
if (name) new_nts.back().from.nt=BinName(bin,nts,new_nts);
}
*/
bin.second=bin_to;
--r;
if (r<rhsmin) {
rhs[rhsmin]=bin_to;
rhs.resize(rhsmin+1);
break;
}
}
})
/*
}
}
*/
#if 0
// marginally more efficient
batched_append_swap(nts,new_nts);
batched_append_swap(rules,new_rules);
//#else
batched_append(nts,new_nts);
batched_append(rules,new_rules);
#endif
}
namespace {
inline int nt_index(int nvar,Hypergraph::TailNodeVector const& t,bool target_side,int w) {
assert(w<0 || (target_side&&w==0));
return t[target_side?-w:nvar];
}
}
void CFG::Init(Hypergraph const& hg,bool target_side,bool copy_features,bool push_weights) {
uninit=false;
hg_=&hg;
Hypergraph::NodeProbs np;
goal_inside=hg.ComputeNodeViterbi(&np);
pushed_inside=push_weights ? goal_inside : prob_t(1);
int nn=hg.nodes_.size(),ne=hg.edges_.size();
nts.resize(nn);
goal_nt=nn-1;
rules.resize(ne);
for (int i=0;i<nn;++i) {
nts[i].ruleids=hg.nodes_[i].in_edges_;
hg.SetNodeOrigin(i,nts[i].from);
}
for (int i=0;i<ne;++i) {
Rule &cfgr=rules[i];
Hypergraph::Edge const& e=hg.edges_[i];
prob_t &crp=cfgr.p;
crp=e.edge_prob_;
cfgr.lhs=e.head_node_;
IF_CFG_TRULE(cfgr.rule=e.rule_;)
if (copy_features) cfgr.f=e.feature_values_;
if (push_weights) crp /=np[e.head_node_];
TRule const& er=*e.rule_;
vector<WordID> const& rule_rhs=target_side?er.e():er.f();
int nr=rule_rhs.size();
RHS &rhs_out=cfgr.rhs;
rhs_out.resize(nr);
Hypergraph::TailNodeVector const& tails=e.tail_nodes_;
int nvar=0;
//split out into separate target_side, source_side loops?
for (int j=0;j<nr;++j) {
WordID w=rule_rhs[j];
if (w>0)
rhs_out[j]=w;
else {
int n=nt_index(nvar,tails,target_side,w);
++nvar;
if (push_weights) crp*=np[n];
rhs_out[j]=-n;
}
}
assert(nvar==er.Arity());
assert(nvar==tails.size());
}
}
void CFG::Clear() {
rules.clear();
nts.clear();
goal_nt=-1;
hg_=0;
}
namespace {
CFGFormat form;
}
void CFG::PrintRule(std::ostream &o,RuleHandle rulei,CFGFormat const& f) const {
Rule const& r=rules[rulei];
f.print_lhs(o,*this,r.lhs);
f.print_rhs(o,*this,r.rhs.begin(),r.rhs.end());
f.print_features(o,r.p,r.f);
IF_CFG_TRULE(if (r.rule) o<<f.partsep<<*r.rule;)
}
void CFG::PrintRule(std::ostream &o,RuleHandle rulei) const {
PrintRule(o,rulei,form);
}
string CFG::ShowRule(RuleHandle i) const {
ostringstream o;PrintRule(o,i);return o.str();
}
void CFG::Print(std::ostream &o,CFGFormat const& f) const {
assert(!uninit);
if (!f.goal_nt_name.empty()) {
o << '['<<f.goal_nt_name <<']';
WordID rhs=-goal_nt;
f.print_rhs(o,*this,&rhs,&rhs+1);
if (pushed_inside!=prob_t::One())
f.print_features(o,pushed_inside);
o<<'\n';
}
CFG_FOR_RULES(i,PrintRule(o,i,f);o<<'\n';)
}
void CFG::Print(std::ostream &o) const {
Print(o,form);
}
std::ostream &operator<<(std::ostream &o,CFG const &x) {
x.Print(o);
return o;
}
|