1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
//TODO: when using many nonterminals, group passive edges for a span (treat all as a single X for the active items).
//TODO: figure out what cdyer was talking about when he said that having unary rules A->B and B->A, doesn't make cycles appear in result provided rules are sorted in some way (that they typically are)
#include "bottom_up_parser.h"
#include <iostream>
#include <map>
#include "hg.h"
#include "array2d.h"
#include "tdict.h"
#include "verbose.h"
using namespace std;
class ActiveChart;
class PassiveChart {
public:
PassiveChart(const string& goal,
const vector<GrammarPtr>& grammars,
const Lattice& input,
Hypergraph* forest);
~PassiveChart();
inline const vector<int>& operator()(int i, int j) const { return chart_(i,j); }
bool Parse();
inline int size() const { return chart_.width(); }
inline bool GoalFound() const { return goal_idx_ >= 0; }
inline int GetGoalIndex() const { return goal_idx_; }
private:
void ApplyRules(const int i,
const int j,
const RuleBin* rules,
const Hypergraph::TailNodeVector& tail,
const float lattice_cost);
void ApplyRule(const int i,
const int j,
const TRulePtr& r,
const Hypergraph::TailNodeVector& ant_nodes,
const float lattice_cost);
void ApplyUnaryRules(const int i, const int j);
const vector<GrammarPtr>& grammars_;
const Lattice& input_;
Hypergraph* forest_;
Array2D<vector<int> > chart_; // chart_(i,j) is the list of nodes derived spanning i,j
typedef map<int, int> Cat2NodeMap;
Array2D<Cat2NodeMap> nodemap_;
vector<ActiveChart*> act_chart_;
const WordID goal_cat_; // category that is being searched for at [0,n]
TRulePtr goal_rule_;
int goal_idx_; // index of goal node, if found
const int lc_fid_;
static WordID kGOAL; // [Goal]
};
WordID PassiveChart::kGOAL = 0;
class ActiveChart {
public:
ActiveChart(const Hypergraph* hg, const PassiveChart& psv_chart) :
hg_(hg),
act_chart_(psv_chart.size(), psv_chart.size()), psv_chart_(psv_chart) {}
struct ActiveItem {
ActiveItem(const GrammarIter* g, const Hypergraph::TailNodeVector& a, float lcost) :
gptr_(g), ant_nodes_(a), lattice_cost(lcost) {}
explicit ActiveItem(const GrammarIter* g) :
gptr_(g), ant_nodes_(), lattice_cost(0.0) {}
void ExtendTerminal(int symbol, float src_cost, vector<ActiveItem>* out_cell) const {
const GrammarIter* ni = gptr_->Extend(symbol);
if (ni) {
out_cell->push_back(ActiveItem(ni, ant_nodes_, lattice_cost + src_cost));
}
}
void ExtendNonTerminal(const Hypergraph* hg, int node_index, vector<ActiveItem>* out_cell) const {
int symbol = hg->nodes_[node_index].cat_;
const GrammarIter* ni = gptr_->Extend(symbol);
if (!ni) return;
Hypergraph::TailNodeVector na(ant_nodes_.size() + 1);
for (int i = 0; i < ant_nodes_.size(); ++i)
na[i] = ant_nodes_[i];
na[ant_nodes_.size()] = node_index;
out_cell->push_back(ActiveItem(ni, na, lattice_cost));
}
const GrammarIter* gptr_;
Hypergraph::TailNodeVector ant_nodes_;
float lattice_cost; // TODO? use SparseVector<double>
};
inline const vector<ActiveItem>& operator()(int i, int j) const { return act_chart_(i,j); }
void SeedActiveChart(const Grammar& g) {
int size = act_chart_.width();
for (int i = 0; i < size; ++i)
if (g.HasRuleForSpan(i,i,0))
act_chart_(i,i).push_back(ActiveItem(g.GetRoot()));
}
void ExtendActiveItems(int i, int k, int j) {
//cerr << " LOOK(" << i << "," << k << ") for completed items in (" << k << "," << j << ")\n";
vector<ActiveItem>& cell = act_chart_(i,j);
const vector<ActiveItem>& icell = act_chart_(i,k);
const vector<int>& idxs = psv_chart_(k, j);
//if (!idxs.empty()) { cerr << "FOUND IN (" << k << "," << j << ")\n"; }
for (vector<ActiveItem>::const_iterator di = icell.begin(); di != icell.end(); ++di) {
for (vector<int>::const_iterator ni = idxs.begin(); ni != idxs.end(); ++ni) {
di->ExtendNonTerminal(hg_, *ni, &cell);
}
}
}
void AdvanceDotsForAllItemsInCell(int i, int j, const vector<vector<LatticeArc> >& input) {
//cerr << "ADVANCE(" << i << "," << j << ")\n";
for (int k=i+1; k < j; ++k)
ExtendActiveItems(i, k, j);
const vector<LatticeArc>& out_arcs = input[j-1];
for (vector<LatticeArc>::const_iterator ai = out_arcs.begin();
ai != out_arcs.end(); ++ai) {
const WordID& f = ai->label;
const double& c = ai->cost;
const int& len = ai->dist2next;
//VLOG(1) << "F: " << TD::Convert(f) << endl;
const vector<ActiveItem>& ec = act_chart_(i, j-1);
for (vector<ActiveItem>::const_iterator di = ec.begin(); di != ec.end(); ++di)
di->ExtendTerminal(f, c, &act_chart_(i, j + len - 1));
}
}
private:
const Hypergraph* hg_;
Array2D<vector<ActiveItem> > act_chart_;
const PassiveChart& psv_chart_;
};
PassiveChart::PassiveChart(const string& goal,
const vector<GrammarPtr>& grammars,
const Lattice& input,
Hypergraph* forest) :
grammars_(grammars),
input_(input),
forest_(forest),
chart_(input.size()+1, input.size()+1),
nodemap_(input.size()+1, input.size()+1),
goal_cat_(TD::Convert(goal) * -1),
goal_rule_(new TRule("[Goal] ||| [" + goal + ",1] ||| [" + goal + ",1]")),
goal_idx_(-1),
lc_fid_(FD::Convert("LatticeCost")) {
act_chart_.resize(grammars_.size());
for (int i = 0; i < grammars_.size(); ++i)
act_chart_[i] = new ActiveChart(forest, *this);
if (!kGOAL) kGOAL = TD::Convert("Goal") * -1;
if (!SILENT) cerr << " Goal category: [" << goal << ']' << endl;
}
void PassiveChart::ApplyRule(const int i,
const int j,
const TRulePtr& r,
const Hypergraph::TailNodeVector& ant_nodes,
const float lattice_cost) {
Hypergraph::Edge* new_edge = forest_->AddEdge(r, ant_nodes);
new_edge->prev_i_ = r->prev_i;
new_edge->prev_j_ = r->prev_j;
new_edge->i_ = i;
new_edge->j_ = j;
new_edge->feature_values_ = r->GetFeatureValues();
if (lattice_cost && lc_fid_)
new_edge->feature_values_.set_value(lc_fid_, lattice_cost);
Cat2NodeMap& c2n = nodemap_(i,j);
const bool is_goal = (r->GetLHS() == kGOAL);
const Cat2NodeMap::iterator ni = c2n.find(r->GetLHS());
Hypergraph::Node* node = NULL;
if (ni == c2n.end()) {
node = forest_->AddNode(r->GetLHS());
c2n[r->GetLHS()] = node->id_;
if (is_goal) {
assert(goal_idx_ == -1);
goal_idx_ = node->id_;
} else {
chart_(i,j).push_back(node->id_);
}
} else {
node = &forest_->nodes_[ni->second];
}
forest_->ConnectEdgeToHeadNode(new_edge, node);
}
void PassiveChart::ApplyRules(const int i,
const int j,
const RuleBin* rules,
const Hypergraph::TailNodeVector& tail,
const float lattice_cost) {
const int n = rules->GetNumRules();
for (int k = 0; k < n; ++k)
ApplyRule(i, j, rules->GetIthRule(k), tail, lattice_cost);
}
void PassiveChart::ApplyUnaryRules(const int i, const int j) {
const vector<int>& nodes = chart_(i,j); // reference is important!
for (int gi = 0; gi < grammars_.size(); ++gi) {
if (!grammars_[gi]->HasRuleForSpan(i,j,input_.Distance(i,j))) continue;
for (int di = 0; di < nodes.size(); ++di) {
const WordID& cat = forest_->nodes_[nodes[di]].cat_;
const vector<TRulePtr>& unaries = grammars_[gi]->GetUnaryRulesForRHS(cat);
for (int ri = 0; ri < unaries.size(); ++ri) {
// cerr << "At (" << i << "," << j << "): applying " << unaries[ri]->AsString() << endl;
const Hypergraph::TailNodeVector ant(1, nodes[di]);
ApplyRule(i, j, unaries[ri], ant, 0); // may update nodes
}
}
}
}
bool PassiveChart::Parse() {
size_t in_size_2 = input_.size() * input_.size();
forest_->nodes_.reserve(in_size_2 * 2);
size_t res = min(static_cast<size_t>(2000000), static_cast<size_t>(in_size_2 * 1000));
forest_->edges_.reserve(res);
goal_idx_ = -1;
for (int gi = 0; gi < grammars_.size(); ++gi)
act_chart_[gi]->SeedActiveChart(*grammars_[gi]);
if (!SILENT) cerr << " ";
for (int l=1; l<input_.size()+1; ++l) {
if (!SILENT) cerr << '.';
for (int i=0; i<input_.size() + 1 - l; ++i) {
int j = i + l;
for (int gi = 0; gi < grammars_.size(); ++gi) {
const Grammar& g = *grammars_[gi];
if (g.HasRuleForSpan(i, j, input_.Distance(i, j))) {
act_chart_[gi]->AdvanceDotsForAllItemsInCell(i, j, input_);
const vector<ActiveChart::ActiveItem>& cell = (*act_chart_[gi])(i,j);
for (vector<ActiveChart::ActiveItem>::const_iterator ai = cell.begin();
ai != cell.end(); ++ai) {
const RuleBin* rules = (ai->gptr_->GetRules());
if (!rules) continue;
ApplyRules(i, j, rules, ai->ant_nodes_, ai->lattice_cost);
}
}
}
ApplyUnaryRules(i,j);
for (int gi = 0; gi < grammars_.size(); ++gi) {
const Grammar& g = *grammars_[gi];
// deal with non-terminals that were just proved
if (g.HasRuleForSpan(i, j, input_.Distance(i,j)))
act_chart_[gi]->ExtendActiveItems(i, i, j);
}
}
const vector<int>& dh = chart_(0, input_.size());
for (int di = 0; di < dh.size(); ++di) {
const Hypergraph::Node& node = forest_->nodes_[dh[di]];
if (node.cat_ == goal_cat_) {
Hypergraph::TailNodeVector ant(1, node.id_);
ApplyRule(0, input_.size(), goal_rule_, ant, 0);
}
}
}
if (!SILENT) cerr << endl;
if (GoalFound())
forest_->PruneUnreachable(forest_->nodes_.size() - 1);
return GoalFound();
}
PassiveChart::~PassiveChart() {
for (int i = 0; i < act_chart_.size(); ++i)
delete act_chart_[i];
}
ExhaustiveBottomUpParser::ExhaustiveBottomUpParser(
const string& goal_sym,
const vector<GrammarPtr>& grammars) :
goal_sym_(goal_sym),
grammars_(grammars) {}
bool ExhaustiveBottomUpParser::Parse(const Lattice& input,
Hypergraph* forest) const {
PassiveChart chart(goal_sym_, grammars_, input, forest);
const bool result = chart.Parse();
return result;
}
|