diff options
Diffstat (limited to 'utils/synutils/maxent-3.0/maxent.cpp')
-rw-r--r-- | utils/synutils/maxent-3.0/maxent.cpp | 703 |
1 files changed, 0 insertions, 703 deletions
diff --git a/utils/synutils/maxent-3.0/maxent.cpp b/utils/synutils/maxent-3.0/maxent.cpp deleted file mode 100644 index 8d00ac1d..00000000 --- a/utils/synutils/maxent-3.0/maxent.cpp +++ /dev/null @@ -1,703 +0,0 @@ -/* - * $Id: maxent.cpp,v 1.1.1.1 2007/05/15 08:30:35 kyoshida Exp $ - */ - -#include "maxent.h" -#include <cmath> -#include <cstdio> -#include "lbfgs.h" - -using namespace std; - -double ME_Model::FunctionGradient(const vector<double>& x, - vector<double>& grad) { - assert((int)_fb.Size() == x.size()); - for (size_t i = 0; i < x.size(); i++) { - _vl[i] = x[i]; - } - - double score = update_model_expectation(); - - if (_l2reg == 0) { - for (size_t i = 0; i < x.size(); i++) { - grad[i] = -(_vee[i] - _vme[i]); - } - } else { - const double c = _l2reg * 2; - for (size_t i = 0; i < x.size(); i++) { - grad[i] = -(_vee[i] - _vme[i] - c * _vl[i]); - } - } - - return -score; -} - -int ME_Model::perform_GIS(int C) { - cerr << "C = " << C << endl; - C = 1; - cerr << "performing AGIS" << endl; - vector<double> pre_v; - double pre_logl = -999999; - for (int iter = 0; iter < 200; iter++) { - - double logl = update_model_expectation(); - fprintf(stderr, "iter = %2d C = %d f = %10.7f train_err = %7.5f", iter, - C, logl, _train_error); - if (_heldout.size() > 0) { - double hlogl = heldout_likelihood(); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", hlogl, - _heldout_error); - } - cerr << endl; - - if (logl < pre_logl) { - C += 1; - _vl = pre_v; - iter--; - continue; - } - if (C > 1 && iter % 10 == 0) C--; - - pre_logl = logl; - pre_v = _vl; - for (int i = 0; i < _fb.Size(); i++) { - double coef = _vee[i] / _vme[i]; - _vl[i] += log(coef) / C; - } - } - cerr << endl; - - return 0; -} - -int ME_Model::perform_QUASI_NEWTON() { - const int dim = _fb.Size(); - vector<double> x0(dim); - - for (int i = 0; i < dim; i++) { - x0[i] = _vl[i]; - } - - vector<double> x; - if (_l1reg > 0) { - cerr << "performing OWLQN" << endl; - x = perform_OWLQN(x0, _l1reg); - } else { - cerr << "performing LBFGS" << endl; - x = perform_LBFGS(x0); - } - - for (int i = 0; i < dim; i++) { - _vl[i] = x[i]; - } - - return 0; -} - -int ME_Model::conditional_probability(const Sample& s, - std::vector<double>& membp) const { - // int num_classes = membp.size(); - double sum = 0; - int max_label = -1; - // double maxp = 0; - - vector<double> powv(_num_classes, 0.0); - for (vector<int>::const_iterator j = s.positive_features.begin(); - j != s.positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - powv[_fb.Feature(*k).label()] += _vl[*k]; - } - } - for (vector<pair<int, double> >::const_iterator j = s.rvfeatures.begin(); - j != s.rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - powv[_fb.Feature(*k).label()] += _vl[*k] * j->second; - } - } - - std::vector<double>::const_iterator pmax = - max_element(powv.begin(), powv.end()); - double offset = max(0.0, *pmax - 700); // to avoid overflow - for (int label = 0; label < _num_classes; label++) { - double pow = powv[label] - offset; - double prod = exp(pow); - // cout << pow << " " << prod << ", "; - // if (_ref_modelp != NULL) prod *= _train_refpd[n][label]; - if (_ref_modelp != NULL) prod *= s.ref_pd[label]; - assert(prod != 0); - membp[label] = prod; - sum += prod; - } - for (int label = 0; label < _num_classes; label++) { - membp[label] /= sum; - if (membp[label] > membp[max_label]) max_label = label; - } - assert(max_label >= 0); - return max_label; -} - -int ME_Model::make_feature_bag(const int cutoff) { - int max_num_features = 0; - -// count the occurrences of features -#ifdef USE_HASH_MAP - typedef __gnu_cxx::hash_map<unsigned int, int> map_type; -#else - typedef std::map<unsigned int, int> map_type; -#endif - map_type count; - if (cutoff > 0) { - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++) { - for (std::vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - count[ME_Feature(i->label, *j).body()]++; - } - for (std::vector<pair<int, double> >::const_iterator j = - i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - count[ME_Feature(i->label, j->first).body()]++; - } - } - } - - int n = 0; - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++, n++) { - max_num_features = - max(max_num_features, (int)(i->positive_features.size())); - for (std::vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - const ME_Feature feature(i->label, *j); - // if (cutoff > 0 && count[feature.body()] < cutoff) continue; - if (cutoff > 0 && count[feature.body()] <= cutoff) continue; - _fb.Put(feature); - // cout << i->label << "\t" << *j << "\t" << id << endl; - // feature2sample[id].push_back(n); - } - for (std::vector<pair<int, double> >::const_iterator j = - i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - const ME_Feature feature(i->label, j->first); - // if (cutoff > 0 && count[feature.body()] < cutoff) continue; - if (cutoff > 0 && count[feature.body()] <= cutoff) continue; - _fb.Put(feature); - } - } - count.clear(); - - // cerr << "num_classes = " << _num_classes << endl; - // cerr << "max_num_features = " << max_num_features << endl; - - init_feature2mef(); - - return max_num_features; -} - -double ME_Model::heldout_likelihood() { - double logl = 0; - int ncorrect = 0; - for (std::vector<Sample>::const_iterator i = _heldout.begin(); - i != _heldout.end(); i++) { - vector<double> membp(_num_classes); - int l = classify(*i, membp); - logl += log(membp[i->label]); - if (l == i->label) ncorrect++; - } - _heldout_error = 1 - (double)ncorrect / _heldout.size(); - - return logl /= _heldout.size(); -} - -double ME_Model::update_model_expectation() { - double logl = 0; - int ncorrect = 0; - - _vme.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) _vme[i] = 0; - - int n = 0; - for (vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++, n++) { - vector<double> membp(_num_classes); - int max_label = conditional_probability(*i, membp); - - logl += log(membp[i->label]); - // cout << membp[*i] << " " << logl << " "; - if (max_label == i->label) ncorrect++; - - // model_expectation - for (vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - _vme[*k] += membp[_fb.Feature(*k).label()]; - } - } - for (vector<pair<int, double> >::const_iterator j = i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - _vme[*k] += membp[_fb.Feature(*k).label()] * j->second; - } - } - } - - for (int i = 0; i < _fb.Size(); i++) { - _vme[i] /= _vs.size(); - } - - _train_error = 1 - (double)ncorrect / _vs.size(); - - logl /= _vs.size(); - - if (_l2reg > 0) { - const double c = _l2reg; - for (int i = 0; i < _fb.Size(); i++) { - logl -= _vl[i] * _vl[i] * c; - } - } - - // logl /= _vs.size(); - - // fprintf(stderr, "iter =%3d logl = %10.7f train_acc = %7.5f\n", iter, - // logl, (double)ncorrect/train.size()); - // fprintf(stderr, "logl = %10.7f train_acc = %7.5f\n", logl, - // (double)ncorrect/_train.size()); - - return logl; -} - -int ME_Model::train(const vector<ME_Sample>& vms) { - _vs.clear(); - for (vector<ME_Sample>::const_iterator i = vms.begin(); i != vms.end(); i++) { - add_training_sample(*i); - } - - return train(); -} - -void ME_Model::add_training_sample(const ME_Sample& mes) { - Sample s; - s.label = _label_bag.Put(mes.label); - if (s.label > ME_Feature::MAX_LABEL_TYPES) { - cerr << "error: too many types of labels." << endl; - exit(1); - } - for (vector<string>::const_iterator j = mes.features.begin(); - j != mes.features.end(); j++) { - s.positive_features.push_back(_featurename_bag.Put(*j)); - } - for (vector<pair<string, double> >::const_iterator j = mes.rvfeatures.begin(); - j != mes.rvfeatures.end(); j++) { - s.rvfeatures.push_back( - pair<int, double>(_featurename_bag.Put(j->first), j->second)); - } - if (_ref_modelp != NULL) { - ME_Sample tmp = mes; - ; - s.ref_pd = _ref_modelp->classify(tmp); - } - // cout << s.label << "\t"; - // for (vector<int>::const_iterator j = s.positive_features.begin(); j != - // s.positive_features.end(); j++){ - // cout << *j << " "; - // } - // cout << endl; - - _vs.push_back(s); -} - -int ME_Model::train() { - if (_l1reg > 0 && _l2reg > 0) { - cerr << "error: L1 and L2 regularizers cannot be used simultaneously." - << endl; - return 0; - } - if (_vs.size() == 0) { - cerr << "error: no training data." << endl; - return 0; - } - if (_nheldout >= (int)_vs.size()) { - cerr << "error: too much heldout data. no training data is available." - << endl; - return 0; - } - // if (_nheldout > 0) random_shuffle(_vs.begin(), _vs.end()); - - int max_label = 0; - for (std::vector<Sample>::const_iterator i = _vs.begin(); i != _vs.end(); - i++) { - max_label = max(max_label, i->label); - } - _num_classes = max_label + 1; - if (_num_classes != _label_bag.Size()) { - cerr << "warning: _num_class != _label_bag.Size()" << endl; - } - - if (_ref_modelp != NULL) { - cerr << "setting reference distribution..."; - for (int i = 0; i < _ref_modelp->num_classes(); i++) { - _label_bag.Put(_ref_modelp->get_class_label(i)); - } - _num_classes = _label_bag.Size(); - for (vector<Sample>::iterator i = _vs.begin(); i != _vs.end(); i++) { - set_ref_dist(*i); - } - cerr << "done" << endl; - } - - for (int i = 0; i < _nheldout; i++) { - _heldout.push_back(_vs.back()); - _vs.pop_back(); - } - - sort(_vs.begin(), _vs.end()); - - int cutoff = 0; - if (cutoff > 0) cerr << "cutoff threshold = " << cutoff << endl; - if (_l1reg > 0) cerr << "L1 regularizer = " << _l1reg << endl; - if (_l2reg > 0) cerr << "L2 regularizer = " << _l2reg << endl; - - // normalize - _l1reg /= _vs.size(); - _l2reg /= _vs.size(); - - cerr << "preparing for estimation..."; - make_feature_bag(cutoff); - // _vs.clear(); - cerr << "done" << endl; - cerr << "number of samples = " << _vs.size() << endl; - cerr << "number of features = " << _fb.Size() << endl; - - cerr << "calculating empirical expectation..."; - _vee.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) { - _vee[i] = 0; - } - for (int n = 0; n < (int)_vs.size(); n++) { - const Sample* i = &_vs[n]; - for (vector<int>::const_iterator j = i->positive_features.begin(); - j != i->positive_features.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[*j].begin(); - k != _feature2mef[*j].end(); k++) { - if (_fb.Feature(*k).label() == i->label) _vee[*k] += 1.0; - } - } - - for (vector<pair<int, double> >::const_iterator j = i->rvfeatures.begin(); - j != i->rvfeatures.end(); j++) { - for (vector<int>::const_iterator k = _feature2mef[j->first].begin(); - k != _feature2mef[j->first].end(); k++) { - if (_fb.Feature(*k).label() == i->label) _vee[*k] += j->second; - } - } - } - for (int i = 0; i < _fb.Size(); i++) { - _vee[i] /= _vs.size(); - } - cerr << "done" << endl; - - _vl.resize(_fb.Size()); - for (int i = 0; i < _fb.Size(); i++) _vl[i] = 0.0; - - if (_optimization_method == SGD) { - perform_SGD(); - } else { - perform_QUASI_NEWTON(); - } - - int num_active = 0; - for (int i = 0; i < _fb.Size(); i++) { - if (_vl[i] != 0) num_active++; - } - cerr << "number of active features = " << num_active << endl; - - return 0; -} - -void ME_Model::get_features(list<pair<pair<string, string>, double> >& fl) { - fl.clear(); - // for (int i = 0; i < _fb.Size(); i++) { - // ME_Feature f = _fb.Feature(i); - // fl.push_back( make_pair(make_pair(_label_bag.Str(f.label()), - // _featurename_bag.Str(f.feature())), _vl[i])); - // } - for (MiniStringBag::map_type::const_iterator i = _featurename_bag.begin(); - i != _featurename_bag.end(); i++) { - for (int j = 0; j < _label_bag.Size(); j++) { - string label = _label_bag.Str(j); - string history = i->first; - int id = _fb.Id(ME_Feature(j, i->second)); - if (id < 0) continue; - fl.push_back(make_pair(make_pair(label, history), _vl[id])); - } - } -} - -void ME_Model::clear() { - _vl.clear(); - _label_bag.Clear(); - _featurename_bag.Clear(); - _fb.Clear(); - _feature2mef.clear(); - _vee.clear(); - _vme.clear(); - _vs.clear(); - _heldout.clear(); -} - -bool ME_Model::load_from_file(const string& filename) { - FILE* fp = fopen(filename.c_str(), "r"); - if (!fp) { - cerr << "error: cannot open " << filename << "!" << endl; - return false; - } - - _vl.clear(); - _label_bag.Clear(); - _featurename_bag.Clear(); - _fb.Clear(); - char buf[1024]; - while (fgets(buf, 1024, fp)) { - string line(buf); - string::size_type t1 = line.find_first_of('\t'); - string::size_type t2 = line.find_last_of('\t'); - string classname = line.substr(0, t1); - string featurename = line.substr(t1 + 1, t2 - (t1 + 1)); - float lambda; - string w = line.substr(t2 + 1); - sscanf(w.c_str(), "%f", &lambda); - - int label = _label_bag.Put(classname); - int feature = _featurename_bag.Put(featurename); - _fb.Put(ME_Feature(label, feature)); - _vl.push_back(lambda); - } - - _num_classes = _label_bag.Size(); - - init_feature2mef(); - - fclose(fp); - - return true; -} - -void ME_Model::init_feature2mef() { - _feature2mef.clear(); - for (int i = 0; i < _featurename_bag.Size(); i++) { - vector<int> vi; - for (int k = 0; k < _num_classes; k++) { - int id = _fb.Id(ME_Feature(k, i)); - if (id >= 0) vi.push_back(id); - } - _feature2mef.push_back(vi); - } -} - -bool ME_Model::load_from_array(const ME_Model_Data data[]) { - _vl.clear(); - for (int i = 0;; i++) { - if (string(data[i].label) == "///") break; - int label = _label_bag.Put(data[i].label); - int feature = _featurename_bag.Put(data[i].feature); - _fb.Put(ME_Feature(label, feature)); - _vl.push_back(data[i].weight); - } - _num_classes = _label_bag.Size(); - - init_feature2mef(); - - return true; -} - -bool ME_Model::save_to_file(const string& filename, const double th) const { - FILE* fp = fopen(filename.c_str(), "w"); - if (!fp) { - cerr << "error: cannot open " << filename << "!" << endl; - return false; - } - - // for (int i = 0; i < _fb.Size(); i++) { - // if (_vl[i] == 0) continue; // ignore zero-weight features - // ME_Feature f = _fb.Feature(i); - // fprintf(fp, "%s\t%s\t%f\n", _label_bag.Str(f.label()).c_str(), - // _featurename_bag.Str(f.feature()).c_str(), _vl[i]); - // } - for (MiniStringBag::map_type::const_iterator i = _featurename_bag.begin(); - i != _featurename_bag.end(); i++) { - for (int j = 0; j < _label_bag.Size(); j++) { - string label = _label_bag.Str(j); - string history = i->first; - int id = _fb.Id(ME_Feature(j, i->second)); - if (id < 0) continue; - if (_vl[id] == 0) continue; // ignore zero-weight features - if (fabs(_vl[id]) < th) continue; // cut off low-weight features - fprintf(fp, "%s\t%s\t%f\n", label.c_str(), history.c_str(), _vl[id]); - } - } - - fclose(fp); - - return true; -} - -void ME_Model::set_ref_dist(Sample& s) const { - vector<double> v0 = s.ref_pd; - vector<double> v(_num_classes); - for (unsigned int i = 0; i < v.size(); i++) { - v[i] = 0; - string label = get_class_label(i); - int id_ref = _ref_modelp->get_class_id(label); - if (id_ref != -1) { - v[i] = v0[id_ref]; - } - if (v[i] == 0) v[i] = 0.001; // to avoid -inf logl - } - s.ref_pd = v; -} - -int ME_Model::classify(const Sample& nbs, vector<double>& membp) const { - // vector<double> membp(_num_classes); - assert(_num_classes == (int)membp.size()); - conditional_probability(nbs, membp); - int max_label = 0; - double max = 0.0; - for (int i = 0; i < (int)membp.size(); i++) { - // cout << membp[i] << " "; - if (membp[i] > max) { - max_label = i; - max = membp[i]; - } - } - // cout << endl; - return max_label; -} - -vector<double> ME_Model::classify(ME_Sample& mes) const { - Sample s; - for (vector<string>::const_iterator j = mes.features.begin(); - j != mes.features.end(); j++) { - int id = _featurename_bag.Id(*j); - if (id >= 0) s.positive_features.push_back(id); - } - for (vector<pair<string, double> >::const_iterator j = mes.rvfeatures.begin(); - j != mes.rvfeatures.end(); j++) { - int id = _featurename_bag.Id(j->first); - if (id >= 0) { - s.rvfeatures.push_back(pair<int, double>(id, j->second)); - } - } - if (_ref_modelp != NULL) { - s.ref_pd = _ref_modelp->classify(mes); - set_ref_dist(s); - } - - vector<double> vp(_num_classes); - int label = classify(s, vp); - mes.label = get_class_label(label); - return vp; -} - -/* - * $Log: maxent.cpp,v $ - * Revision 1.1.1.1 2007/05/15 08:30:35 kyoshida - * stepp tagger, by Okanohara and Tsuruoka - * - * Revision 1.28 2006/08/21 17:30:38 tsuruoka - * use MAX_LABEL_TYPES - * - * Revision 1.27 2006/07/25 13:19:53 tsuruoka - * sort _vs[] - * - * Revision 1.26 2006/07/18 11:13:15 tsuruoka - * modify comments - * - * Revision 1.25 2006/07/18 10:02:15 tsuruoka - * remove sample2feature[] - * speed up conditional_probability() - * - * Revision 1.24 2006/07/18 05:10:51 tsuruoka - * add ref_dist - * - * Revision 1.23 2005/12/24 07:05:32 tsuruoka - * modify conditional_probability() to avoid overflow - * - * Revision 1.22 2005/12/24 07:01:25 tsuruoka - * add cutoff for real-valued features - * - * Revision 1.21 2005/12/23 10:33:02 tsuruoka - * support real-valued features - * - * Revision 1.20 2005/12/23 09:15:29 tsuruoka - * modify _train to reduce memory consumption - * - * Revision 1.19 2005/10/28 13:10:14 tsuruoka - * fix for overflow (thanks to Ming Li) - * - * Revision 1.18 2005/10/28 13:03:07 tsuruoka - * add progress_bar - * - * Revision 1.17 2005/09/12 13:51:16 tsuruoka - * Sample: list -> vector - * - * Revision 1.16 2005/09/12 13:27:10 tsuruoka - * add add_training_sample() - * - * Revision 1.15 2005/04/27 11:22:27 tsuruoka - * bugfix - * ME_Sample: list -> vector - * - * Revision 1.14 2005/04/27 10:00:42 tsuruoka - * remove tmpfb - * - * Revision 1.13 2005/04/26 14:25:53 tsuruoka - * add MiniStringBag, USE_HASH_MAP - * - * Revision 1.12 2005/02/11 10:20:08 tsuruoka - * modify cutoff - * - * Revision 1.11 2004/10/04 05:50:25 tsuruoka - * add Clear() - * - * Revision 1.10 2004/08/26 16:52:26 tsuruoka - * fix load_from_file() - * - * Revision 1.9 2004/08/09 12:27:21 tsuruoka - * change messages - * - * Revision 1.8 2004/08/04 13:55:18 tsuruoka - * modify _sample2feature - * - * Revision 1.7 2004/07/28 13:42:58 tsuruoka - * add AGIS - * - * Revision 1.6 2004/07/28 05:54:13 tsuruoka - * get_class_name() -> get_class_label() - * ME_Feature: bugfix - * - * Revision 1.5 2004/07/27 16:58:47 tsuruoka - * modify the interface of classify() - * - * Revision 1.4 2004/07/26 17:23:46 tsuruoka - * _sample2feature: list -> vector - * - * Revision 1.3 2004/07/26 15:49:23 tsuruoka - * modify ME_Feature - * - * Revision 1.2 2004/07/26 13:52:18 tsuruoka - * modify cutoff - * - * Revision 1.1 2004/07/26 13:10:55 tsuruoka - * add files - * - * Revision 1.20 2004/07/22 08:34:45 tsuruoka - * modify _sample2feature[] - * - * Revision 1.19 2004/07/21 16:33:01 tsuruoka - * remove some comments - * - */ |