diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/dtrain/score.h | 3 | ||||
-rw-r--r-- | training/dtrain/score_net_interface.h | 200 |
2 files changed, 201 insertions, 2 deletions
diff --git a/training/dtrain/score.h b/training/dtrain/score.h index b0b73e94..06dbc5a4 100644 --- a/training/dtrain/score.h +++ b/training/dtrain/score.h @@ -189,8 +189,7 @@ struct PerSentenceBleuScorer / ((counts.sum_[i] + add))); } - //return BrevityPenalty(hl, rl+1) * exp(sum); - return BrevityPenalty(hl, rl) * exp(sum); + return BrevityPenalty(hl, rl+1) * exp(sum); } }; diff --git a/training/dtrain/score_net_interface.h b/training/dtrain/score_net_interface.h new file mode 100644 index 00000000..6e359249 --- /dev/null +++ b/training/dtrain/score_net_interface.h @@ -0,0 +1,200 @@ +#ifndef _DTRAIN_SCORE_NET_INTERFACE_H_ +#define _DTRAIN_SCORE_NET_INTERFACE_H_ + +#include "dtrain.h" + +namespace dtrain +{ + +struct NgramCounts +{ + size_t N_; + map<size_t, weight_t> clipped_; + map<size_t, weight_t> sum_; + + NgramCounts(const size_t N) : N_(N) { Zero(); } + + inline void + operator+=(const NgramCounts& rhs) + { + if (rhs.N_ > N_) Resize(rhs.N_); + for (size_t i = 0; i < N_; i++) { + this->clipped_[i] += rhs.clipped_.find(i)->second; + this->sum_[i] += rhs.sum_.find(i)->second; + } + } + + inline const NgramCounts + operator+(const NgramCounts &other) const + { + NgramCounts result = *this; + result += other; + + return result; + } + + inline void + Add(const size_t count, const size_t ref_count, const size_t i) + { + assert(i < N_); + if (count > ref_count) { + clipped_[i] += ref_count; + } else { + clipped_[i] += count; + } + sum_[i] += count; + } + + inline void + Zero() + { + for (size_t i = 0; i < N_; i++) { + clipped_[i] = 0.; + sum_[i] = 0.; + } + } + + inline void + Resize(size_t N) + { + if (N == N_) return; + else if (N > N_) { + for (size_t i = N_; i < N; i++) { + clipped_[i] = 0.; + sum_[i] = 0.; + } + } else { // N < N_ + for (size_t i = N_-1; i > N-1; i--) { + clipped_.erase(i); + sum_.erase(i); + } + } + N_ = N; + } +}; + +typedef map<vector<WordID>, size_t> Ngrams; + +inline Ngrams +MakeNgrams(const vector<WordID>& s, const size_t N) +{ + Ngrams ngrams; + vector<WordID> ng; + for (size_t i = 0; i < s.size(); i++) { + ng.clear(); + for (size_t j = i; j < min(i+N, s.size()); j++) { + ng.push_back(s[j]); + ngrams[ng]++; + } + } + + return ngrams; +} + +inline NgramCounts +MakeNgramCounts(const vector<WordID>& hyp, + const vector<Ngrams>& ref, + const size_t N) +{ + Ngrams hyp_ngrams = MakeNgrams(hyp, N); + NgramCounts counts(N); + Ngrams::iterator it, ti; + for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) { + size_t max_ref_count = 0; + for (auto r: ref) { + ti = r.find(it->first); + if (ti != r.end()) + max_ref_count = max(max_ref_count, ti->second); + } + counts.Add(it->second, min(it->second, max_ref_count), it->first.size()-1); + } + + return counts; +} + +/* + * per-sentence BLEU + * as in "Optimizing for Sentence-Level BLEU+1 + * Yields Short Translations" + * (Nakov et al. '12) + * + * [simply add 1 to reference length for calculation of BP] + * + */ +struct PerSentenceBleuScorer +{ + const size_t N_; + vector<weight_t> w_; + + PerSentenceBleuScorer(size_t n) : N_(n) + { + for (size_t i = 1; i <= N_; i++) + w_.push_back(1.0/N_); + } + + inline weight_t + BrevityPenalty(const size_t hl, const size_t rl) + { + if (hl > rl) + return 1; + + return exp(1 - (weight_t)rl/hl); + } + + inline size_t + BestMatchLength(const size_t hl, + const vector<size_t>& ref_ls) + { + size_t m; + if (ref_ls.size() == 1) { + m = ref_ls.front(); + } else { + size_t i = 0, best_idx = 0; + size_t best = numeric_limits<size_t>::max(); + for (auto l: ref_ls) { + size_t d = abs(hl-l); + if (d < best) { + best_idx = i; + best = d; + } + i += 1; + } + m = ref_ls[best_idx]; + } + + return m; + } + + weight_t + Score(const vector<WordID>& hyp, + const vector<Ngrams>& ref_ngs, + const vector<size_t>& ref_ls) + { + size_t hl = hyp.size(), rl = 0; + if (hl == 0) return 0.; + rl = BestMatchLength(hl, ref_ls); + if (rl == 0) return 0.; + NgramCounts counts = MakeNgramCounts(hyp, ref_ngs, N_); + size_t M = N_; + vector<weight_t> v = w_; + if (rl < N_) { + M = rl; + for (size_t i = 0; i < M; i++) v[i] = 1/((weight_t)M); + } + weight_t sum = 0, add = 0; + for (size_t i = 0; i < M; i++) { + if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.; + if (i > 0) add = 1; + sum += v[i] * log(((weight_t)counts.clipped_[i] + add) + / ((counts.sum_[i] + add))); + } + + //return BrevityPenalty(hl, rl+1) * exp(sum); + return BrevityPenalty(hl, rl) * exp(sum); + } +}; + +} // namespace + +#endif + |