diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/Makefile.am | 4 | ||||
| -rw-r--r-- | training/mpi_flex_optimize.cc | 346 | 
2 files changed, 350 insertions, 0 deletions
| diff --git a/training/Makefile.am b/training/Makefile.am index 0b598fd5..2a11ae52 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -12,6 +12,7 @@ bin_PROGRAMS = \    mpi_extract_reachable \    mpi_extract_features \    mpi_online_optimize \ +  mpi_flex_optimize \    mpi_batch_optimize \    mpi_compute_cllh \    augment_grammar @@ -25,6 +26,9 @@ TESTS = lbfgs_test optimize_test  mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc  mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz +mpi_flex_optimize_SOURCES = mpi_flex_optimize.cc online_optimizer.cc optimize.cc +mpi_flex_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz +  mpi_extract_reachable_SOURCES = mpi_extract_reachable.cc  mpi_extract_reachable_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz diff --git a/training/mpi_flex_optimize.cc b/training/mpi_flex_optimize.cc new file mode 100644 index 00000000..87c5f331 --- /dev/null +++ b/training/mpi_flex_optimize.cc @@ -0,0 +1,346 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <cassert> +#include <cmath> + +#include <boost/shared_ptr.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "stringlib.h" +#include "verbose.h" +#include "hg.h" +#include "prob.h" +#include "inside_outside.h" +#include "ff_register.h" +#include "decoder.h" +#include "filelib.h" +#include "optimize.h" +#include "fdict.h" +#include "weights.h" +#include "sparse_vector.h" +#include "sampler.h" + +#ifdef HAVE_MPI +#include <boost/mpi/timer.hpp> +#include <boost/mpi.hpp> +namespace mpi = boost::mpi; +#endif + +using namespace std; +namespace po = boost::program_options; + +bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { +  po::options_description opts("Configuration options"); +  opts.add_options() +        ("cdec_config,c",po::value<string>(),"Decoder configuration file") +        ("weights,w",po::value<string>(),"Initial feature weights") +        ("training_data,d",po::value<string>(),"Training data") +        ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(6), "Number of training instances evaluated per processor in each minibatch") +        ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (options: lbfgs, sgd, rprop)") +        ("minibatch_iterations,i", po::value<unsigned>()->default_value(10), "Number of optimization iterations per minibatch (1 = standard SGD)") +        ("iterations,I", po::value<unsigned>()->default_value(50), "Number of passes through the training data before termination") +        ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") +        ("lbfgs_memory_buffers,M", po::value<unsigned>()->default_value(10), "Number of memory buffers for LBFGS history") +        ("eta_0,e", po::value<double>()->default_value(0.1), "Initial learning rate for SGD") +        ("L1,1","Use L1 regularization") +        ("L2,2","Use L2 regularization") +        ("regularization_strength,C", po::value<double>()->default_value(1.0), "Regularization strength (C)"); +  po::options_description clo("Command line options"); +  clo.add_options() +        ("config", po::value<string>(), "Configuration file") +        ("help,h", "Print this help message and exit"); +  po::options_description dconfig_options, dcmdline_options; +  dconfig_options.add(opts); +  dcmdline_options.add(opts).add(clo); +   +  po::store(parse_command_line(argc, argv, dcmdline_options), *conf); +  if (conf->count("config")) { +    ifstream config((*conf)["config"].as<string>().c_str()); +    po::store(po::parse_config_file(config, dconfig_options), *conf); +  } +  po::notify(*conf); + +  if (conf->count("help") || !conf->count("training_data") || !conf->count("cdec_config")) { +    cerr << "General-purpose minibatch online optimizer (MPI support " +#if HAVE_MPI +         << "enabled" +#else +         << "not enabled" +#endif +         << ")\n" << dcmdline_options << endl; +    return false; +  } +  return true; +} + +void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) { +  ReadFile rf(fname); +  istream& in = *rf.stream(); +  string line; +  int id = 0; +  while(in) { +    getline(in, line); +    if (!in) break; +    if (id % size == rank) { +      c->push_back(line); +      order->push_back(id); +    } +    ++id; +  } +} + +static const double kMINUS_EPSILON = -1e-6; + +struct CopyHGsObserver : public DecoderObserver { +  Hypergraph* hg_; +  Hypergraph* gold_hg_; + +  // this can free up some memory +  void RemoveRules(Hypergraph* h) { +    for (unsigned i = 0; i < h->edges_.size(); ++i) +      h->edges_[i].rule_.reset(); +  } + +  void SetCurrentHypergraphs(Hypergraph* h, Hypergraph* gold_h) { +    hg_ = h; +    gold_hg_ = gold_h; +  } + +  virtual void NotifyDecodingStart(const SentenceMetadata&) { +    state = 1; +  } + +  // compute model expectations, denominator of objective +  virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { +    *hg_ = *hg; +    RemoveRules(hg_); +    assert(state == 1); +    state = 2; +  } + +  // compute "empirical" expectations, numerator of objective +  virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) { +    assert(state == 2); +    state = 3; +    *gold_hg_ = *hg; +    RemoveRules(gold_hg_); +  } + +  virtual void NotifyDecodingComplete(const SentenceMetadata&) { +    if (state == 3) { +    } else { +      hg_->clear(); +      gold_hg_->clear(); +    } +  } + +  int state; +}; + +void ReadConfig(const string& ini, istringstream* out) { +  ReadFile rf(ini); +  istream& in = *rf.stream(); +  ostringstream os; +  while(in) { +    string line; +    getline(in, line); +    if (!in) continue; +    os << line << endl; +  } +  out->str(os.str()); +} + +#ifdef HAVE_MPI +namespace boost { namespace mpi { +  template<> +  struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >  +    : mpl::true_ { }; +} } // end namespace boost::mpi +#endif + +void AddGrad(const SparseVector<prob_t> x, double s, SparseVector<double>* acc) { +  for (SparseVector<prob_t>::const_iterator it = x.begin(); it != x.end(); ++it) +    acc->add_value(it->first, it->second.as_float() * s); +} + +int main(int argc, char** argv) { +#ifdef HAVE_MPI +  mpi::environment env(argc, argv); +  mpi::communicator world; +  const int size = world.size();  +  const int rank = world.rank(); +#else +  const int size = 1; +  const int rank = 0; +#endif +  if (size > 1) SetSilent(true);  // turn off verbose decoder output +  register_feature_functions(); +  MT19937* rng = NULL; + +  po::variables_map conf; +  if (!InitCommandLine(argc, argv, &conf)) +    return 1; + +  boost::shared_ptr<BatchOptimizer> o; +  const unsigned lbfgs_memory_buffers = conf["lbfgs_memory_buffers"].as<unsigned>(); + +  istringstream ins; +  ReadConfig(conf["cdec_config"].as<string>(), &ins); +  Decoder decoder(&ins); + +  // load initial weights +  vector<weight_t> init_weights; +  if (conf.count("weights")) +    Weights::InitFromFile(conf["weights"].as<string>(), &init_weights); + +  vector<string> corpus; +  vector<int> ids; +  ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); +  assert(corpus.size() > 0); + +  const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>(); +  if (size_per_proc > corpus.size()) { +    cerr << "Minibatch size must be smaller than corpus size!\n"; +    return 1; +  } + +  size_t total_corpus_size = 0; +#ifdef HAVE_MPI +  reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0); +#else +  total_corpus_size = corpus.size(); +#endif + +  if (conf.count("random_seed")) +    rng = new MT19937(conf["random_seed"].as<uint32_t>()); +  else +    rng = new MT19937; + +  const unsigned minibatch_iterations = conf["minibatch_iterations"].as<unsigned>(); + +  if (rank == 0) { +    cerr << "Total corpus size: " << total_corpus_size << endl; +    const unsigned batch_size = size_per_proc * size; +  } + +  SparseVector<double> x; +  Weights::InitSparseVector(init_weights, &x); +  CopyHGsObserver observer; + +  int write_weights_every_ith = 100; // TODO configure +  int titer = -1; + +  vector<weight_t>& lambdas = decoder.CurrentWeightVector(); +  lambdas.swap(init_weights); +  init_weights.clear(); + +  int iter = -1; +  bool converged = false; +  while (!converged) { +#ifdef HAVE_MPI +    mpi::timer timer; +#endif +    x.init_vector(&lambdas); +    ++iter; ++titer; +#if 0 +    if (rank == 0) { +      converged = (iter == max_iteration); +      Weights::SanityCheck(lambdas); +      Weights::ShowLargestFeatures(lambdas); +        string fname = "weights.cur.gz"; +        if (iter % write_weights_every_ith == 0) { +          ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; +          fname = o.str(); +        } +        if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; } +        ostringstream vv; +        vv << "total iter=" << titer << " (of current config iter=" << iter << ")  minibatch=" << size_per_proc << " sentences/proc x " << size << " procs.   num_feats=" << x.size() << '/' << FD::NumFeats() << "   passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << "   eta=" << lr->eta(titer); +        const string svv = vv.str(); +        cerr << svv << endl; +        Weights::WriteToFile(fname, lambdas, true, &svv); +      } +#endif + +      vector<Hypergraph> hgs(size_per_proc); +      vector<Hypergraph> gold_hgs(size_per_proc); +      for (int i = 0; i < size_per_proc; ++i) { +        int ei = corpus.size() * rng->next(); +        int id = ids[ei]; +        observer.SetCurrentHypergraphs(&hgs[i], &gold_hgs[i]); +        decoder.SetId(id); +        decoder.Decode(corpus[ei], &observer); +      } + +      SparseVector<double> local_grad, g; +      double local_obj = 0; +      o.reset(); +      for (unsigned mi = 0; mi < minibatch_iterations; ++mi) { +        local_grad.clear(); +        g.clear(); +        local_obj = 0; + +        for (unsigned i = 0; i < size_per_proc; ++i) { +          Hypergraph& hg = hgs[i]; +          Hypergraph& hg_gold = gold_hgs[i]; +          if (hg.edges_.size() < 2) continue; + +          hg.Reweight(lambdas); +          hg_gold.Reweight(lambdas); +          SparseVector<prob_t> model_exp, gold_exp; +          const prob_t z = InsideOutside<prob_t, +                                         EdgeProb, +                                         SparseVector<prob_t>, +                                         EdgeFeaturesAndProbWeightFunction>(hg, &model_exp); +          local_obj += log(z); +          model_exp /= z; +          AddGrad(model_exp, 1.0, &local_grad); +          model_exp.clear(); + +          const prob_t goldz = InsideOutside<prob_t, +                                         EdgeProb, +                                         SparseVector<prob_t>, +                                         EdgeFeaturesAndProbWeightFunction>(hg_gold, &gold_exp); +          local_obj -= log(goldz); + +          if (log(z) - log(goldz) < kMINUS_EPSILON) { +            cerr << "DIFF. ERR! log_model_z < log_gold_z: " << log(z) << " " << log(goldz) << endl; +            return 1; +          } + +          gold_exp /= goldz; +          AddGrad(gold_exp, -1.0, &local_grad); +        } + +        double obj = 0; +#ifdef HAVE_MPI +        // TODO obj +        reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0); +#else +        obj = local_obj; +        g.swap(local_grad); +#endif +        local_grad.clear(); +        if (rank == 0) { +          g /= (size_per_proc * size); +          if (!o) +            o.reset(new LBFGSOptimizer(FD::NumFeats(), lbfgs_memory_buffers)); +          vector<double> gg(FD::NumFeats()); +          if (gg.size() != lambdas.size()) { lambdas.resize(gg.size()); } +          for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it) +            if (it->first) { gg[it->first] = it->second; } +          cerr << "OBJ: " << obj << endl; +          o->Optimize(obj, gg, &lambdas); +        } +#ifdef HAVE_MPI +        broadcast(world, x, 0); +        broadcast(world, converged, 0); +        world.barrier(); +        if (rank == 0) { cerr << "  ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } +#endif +    } +  } +  return 0; +} | 
