summaryrefslogtreecommitdiff
path: root/training/dtrain/dtrain_net_interface.cc
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain/dtrain_net_interface.cc')
-rw-r--r--training/dtrain/dtrain_net_interface.cc5
1 files changed, 4 insertions, 1 deletions
diff --git a/training/dtrain/dtrain_net_interface.cc b/training/dtrain/dtrain_net_interface.cc
index f16b9304..77ccde55 100644
--- a/training/dtrain/dtrain_net_interface.cc
+++ b/training/dtrain/dtrain_net_interface.cc
@@ -143,7 +143,7 @@ main(int argc, char** argv)
cerr << "[dtrain] learning ..." << endl;
source = parts[0];
// debug --
- debug_output << "\"source\":\"" << source.substr(source.find_first_of(">")+1, source.find_last_of("<")-3) << "\"," << endl;
+ debug_output << "\"source\":\"" << source.substr(source.find_first_of(">")+2, source.find_last_of(">")-6) << "\"," << endl;
debug_output << "\"target\":\"" << parts[1] << "\"," << endl;
// -- debug
parts.erase(parts.begin());
@@ -198,11 +198,14 @@ main(int argc, char** argv)
// get pairs and update
SparseVector<weight_t> updates;
size_t num_up = CollectUpdates(samples, updates, margin);
+ debug_output << "\"1best_features\":\"" << (*samples)[0].f << "\"," << endl;
+ debug_output << "\"update_raw\":\"" << updates << "\"," << endl;
updates *= eta_sparse; // apply learning rate for sparse features
for (auto feat: dense_features) { // apply learning rate for dense features
updates[FD::Convert(feat)] /= eta_sparse;
updates[FD::Convert(feat)] *= eta;
}
+ debug_output << "\"update\":\"" << updates << "\"," << endl;
// debug --
debug_output << "\"num_up\":" << num_up << "," << endl;
debug_output << "\"updated_features\":" << updates.size() << "," << endl;