diff options
author | Wu, Ke <wuke@cs.umd.edu> | 2014-10-07 17:22:11 -0400 |
---|---|---|
committer | Wu, Ke <wuke@cs.umd.edu> | 2014-10-07 17:22:11 -0400 |
commit | 00968d1ba03c0603440fe5a765b87869b99a0a93 (patch) | |
tree | f264c07d9851b47b117839fc9345d7e1d5e880a2 /utils/synutils/maxent-3.0/lbfgs.cpp | |
parent | f762dbbf10a8204d0d0b82e9acb29feacd3b3bb4 (diff) |
Apply clang-format
Diffstat (limited to 'utils/synutils/maxent-3.0/lbfgs.cpp')
-rw-r--r-- | utils/synutils/maxent-3.0/lbfgs.cpp | 48 |
1 files changed, 23 insertions, 25 deletions
diff --git a/utils/synutils/maxent-3.0/lbfgs.cpp b/utils/synutils/maxent-3.0/lbfgs.cpp index 9eb04bef..bd26f048 100644 --- a/utils/synutils/maxent-3.0/lbfgs.cpp +++ b/utils/synutils/maxent-3.0/lbfgs.cpp @@ -8,20 +8,17 @@ using namespace std; -const static int M = LBFGS_M; +const static int M = LBFGS_M; const static double LINE_SEARCH_ALPHA = 0.1; -const static double LINE_SEARCH_BETA = 0.5; +const static double LINE_SEARCH_BETA = 0.5; // stopping criteria -int LBFGS_MAX_ITER = 300; +int LBFGS_MAX_ITER = 300; const static double MIN_GRAD_NORM = 0.0001; - -double -ME_Model::backtracking_line_search( - const Vec & x0, const Vec & grad0, const double f0, - const Vec & dx, Vec & x, Vec & grad1) -{ +double ME_Model::backtracking_line_search(const Vec& x0, const Vec& grad0, + const double f0, const Vec& dx, + Vec& x, Vec& grad1) { double t = 1.0 / LINE_SEARCH_BETA; double f; @@ -39,20 +36,23 @@ ME_Model::backtracking_line_search( // Jorge Nocedal, "Updating Quasi-Newton Matrices With Limited Storage", // Mathematics of Computation, Vol. 35, No. 151, pp. 773-782, 1980. // -Vec -approximate_Hg(const int iter, const Vec & grad, - const Vec s[], const Vec y[], const double z[]) -{ +Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[], + const Vec y[], const double z[]) { int offset, bound; - if (iter <= M) { offset = 0; bound = iter; } - else { offset = iter - M; bound = M; } + if (iter <= M) { + offset = 0; + bound = iter; + } else { + offset = iter - M; + bound = M; + } Vec q = grad; double alpha[M], beta[M]; for (int i = bound - 1; i >= 0; i--) { const int j = (i + offset) % M; - alpha[i] = z[j] * dot_product(s[j], q); - q += -alpha[i] * y[j]; + alpha[i] = z[j] * dot_product(s[j], q); + q += -alpha[i] * y[j]; } if (iter > 0) { const int j = (iter - 1) % M; @@ -63,16 +63,14 @@ approximate_Hg(const int iter, const Vec & grad, } for (int i = 0; i <= bound - 1; i++) { const int j = (i + offset) % M; - beta[i] = z[j] * dot_product(y[j], q); - q += s[j] * (alpha[i] - beta[i]); + beta[i] = z[j] * dot_product(y[j], q); + q += s[j] * (alpha[i] - beta[i]); } return q; } -vector<double> -ME_Model::perform_LBFGS(const vector<double> & x0) -{ +vector<double> ME_Model::perform_LBFGS(const vector<double>& x0) { const size_t dim = x0.size(); Vec x = x0; @@ -84,10 +82,11 @@ ME_Model::perform_LBFGS(const vector<double> & x0) for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) { - fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter+1, -f, _train_error); + fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error); if (_nheldout > 0) { const double heldout_logl = heldout_likelihood(); - fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, _heldout_error); + fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, + _heldout_error); } fprintf(stderr, "\n"); @@ -107,4 +106,3 @@ ME_Model::perform_LBFGS(const vector<double> & x0) return x.STLVec(); } - |