diff options
author | Patrick Simianer <p@simianer.de> | 2015-02-01 19:56:17 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2015-02-01 19:56:17 +0100 |
commit | b31708e1066ff699c7c06d1edb7c8223b84d62cd (patch) | |
tree | 1aeab1bb47cf0c911ed4008f57ee4842969c6b20 /training | |
parent | 0f5a50a50c0a1984354ffbf131016b912f7be633 (diff) |
dtrain: rm fix_features
Diffstat (limited to 'training')
-rw-r--r-- | training/dtrain/dtrain.cc | 21 |
1 files changed, 3 insertions, 18 deletions
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 4c5972a1..64fbf80d 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -43,7 +43,6 @@ dtrain_init(int argc, char** argv, po::variables_map* conf) ("repeat", po::value<unsigned>()->default_value(1), "repeat optimization over kbest list this number of times") ("check", po::value<bool>()->zero_tokens(), "produce list of loss differentials") ("output_ranking", po::value<string>()->default_value(""), "Output kbests with model scores and metric per iteration to this folder.") - ("fix_features", po::value<bool>()->zero_tokens(), "Ignore all features that are not in input_weights.") ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); po::options_description cl("Command Line Options"); cl.add_options() @@ -112,12 +111,10 @@ main(int argc, char** argv) if (conf.count("verbose")) verbose = true; bool noup = false; if (conf.count("noup")) noup = true; - bool rescale = false; - if (conf.count("rescale")) rescale = true; bool keep = false; if (conf.count("keep")) keep = true; - bool fix_features = false; - if (conf.count("fix_features")) fix_features = true; + bool rescale = false; + if (conf.count("rescale")) rescale = true; const unsigned k = conf["k"].as<unsigned>(); const unsigned N = conf["N"].as<unsigned>(); @@ -196,16 +193,8 @@ main(int argc, char** argv) vector<weight_t>& decoder_weights = decoder.CurrentWeightVector(); SparseVector<weight_t> lambdas, cumulative_penalties, w_average, fixed; - if (conf.count("input_weights")) { + if (conf.count("input_weights")) Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights); - if (fix_features) { - Weights::InitSparseVector(decoder_weights, &fixed); - SparseVector<weight_t>::iterator it = fixed.begin(); - for (; it != fixed.end(); ++it) { - it->second = 1.0; - } - } - } Weights::InitSparseVector(decoder_weights, &lambdas); // meta params for perceptron, SVM @@ -344,8 +333,6 @@ main(int argc, char** argv) if (next || stop) break; // weights - if (fix_features) - lambdas.cw_mult(fixed); lambdas.init_vector(&decoder_weights); // getting input @@ -657,8 +644,6 @@ main(int argc, char** argv) // write weights to file if (select_weights == "best" || keep) { - if (fix_features) - lambdas.cw_mult(fixed); lambdas.init_vector(&decoder_weights); string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz"; Weights::WriteToFile(w_fn, decoder_weights, true); |