diff options
author | Paul Baltescu <pauldb89@gmail.com> | 2013-11-23 17:33:47 +0000 |
---|---|---|
committer | Paul Baltescu <pauldb89@gmail.com> | 2013-11-23 17:33:47 +0000 |
commit | cc6313b23cac25eb05976b6cf64f96faf1ed4163 (patch) | |
tree | 3dc28060ad25b43773e875bea7388ab1cefcd927 /training/dtrain/examples | |
parent | 7990c750829af93f0a1e0fc14534582f52ee9e8c (diff) | |
parent | f2fb69b10a897e8beb4e6e6d6cbb4327096235ef (diff) |
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'training/dtrain/examples')
-rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 11 | ||||
-rw-r--r-- | training/dtrain/examples/standard/expected-output | 125 | ||||
-rw-r--r-- | training/dtrain/examples/standard/nc-wmt11.gz | bin | 0 -> 113504 bytes |
3 files changed, 85 insertions, 51 deletions
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index 23e94285..fc83f08e 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -1,5 +1,6 @@ -input=./nc-wmt11.de.gz -refs=./nc-wmt11.en.gz +#input=./nc-wmt11.de.gz +#refs=./nc-wmt11.en.gz +bitext=./nc-wmt11.gz output=- # a weights file (add .gz for gzip compression) or STDOUT '-' select_weights=VOID # output average (over epochs) weight vector decoder_config=./cdec.ini # config for cdec @@ -10,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr stop_after=10 # stop epoch after 10 inputs # interesting stuff -epochs=2 # run over input 2 times +epochs=3 # run over input 3 times k=100 # use 100best lists N=4 # optimize (approx) BLEU4 scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 -learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) +learning_rate=0.1 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron) gamma=0 # use SVM reg sample_from=kbest # use kbest lists (as opposed to forest) filter=uniq # only unique entries in kbest (surface form) @@ -22,3 +23,5 @@ pair_sampling=XYX # hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here pair_threshold=0 # minimum distance in BLEU (here: > 0) loss_margin=0 # update if correctly ranked, but within this margin +repeat=1 # repeat training on a kbest list 1 times +#batch=true # batch tuning, update after accumulating over all sentences and all kbest lists diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 21f91244..75f47337 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** Example feature: Shape_S00000_T00000 -Seeding random number sequence to 970626287 +Seeding random number sequence to 3751911392 dtrain Parameters: k 100 N 4 - T 2 + T 3 + batch 0 scorer 'fixed_stupid_bleu' sample from 'kbest' filter 'uniq' - learning rate 1 + learning rate 0.1 gamma 0 loss margin 0 faster perceptron 1 @@ -23,69 +24,99 @@ Parameters: pair threshold 0 select weights 'VOID' l1 reg 0 'none' + pclr no max pairs 4294967295 + repeat 1 cdec cfg './cdec.ini' - input './nc-wmt11.de.gz' - refs './nc-wmt11.en.gz' + input './nc-wmt11.gz' output '-' stop_after 10 (a dot represents 10 inputs) -Iteration #1 of 2. +Iteration #1 of 3. . 10 Stopping after 10 input sentences. WEIGHTS - Glue = -614 - WordPenalty = +1256.8 - LanguageModel = +5610.5 - LanguageModel_OOV = -1449 - PhraseModel_0 = -2107 - PhraseModel_1 = -4666.1 - PhraseModel_2 = -2713.5 - PhraseModel_3 = +4204.3 - PhraseModel_4 = -1435.8 - PhraseModel_5 = +916 - PhraseModel_6 = +190 - PassThrough = -2527 + Glue = -110 + WordPenalty = -8.2082 + LanguageModel = -319.91 + LanguageModel_OOV = -19.2 + PhraseModel_0 = +312.82 + PhraseModel_1 = -161.02 + PhraseModel_2 = -433.65 + PhraseModel_3 = +291.03 + PhraseModel_4 = +252.32 + PhraseModel_5 = +50.6 + PhraseModel_6 = +146.7 + PassThrough = -38.7 --- - 1best avg score: 0.17874 (+0.17874) - 1best avg model score: 88399 (+88399) - avg # pairs: 798.2 (meaningless) - avg # rank err: 798.2 + 1best avg score: 0.16966 (+0.16966) + 1best avg model score: 29874 (+29874) + avg # pairs: 906.3 + avg # rank err: 0 (meaningless) avg # margin viol: 0 - non0 feature count: 887 + k-best loss imp: 100% + non0 feature count: 832 avg list sz: 91.3 - avg f count: 126.85 -(time 0.33 min, 2 s/S) + avg f count: 139.77 +(time 0.35 min, 2.1 s/S) -Iteration #2 of 2. +Iteration #2 of 3. . 10 WEIGHTS - Glue = -1025 - WordPenalty = +1751.5 - LanguageModel = +10059 - LanguageModel_OOV = -4490 - PhraseModel_0 = -2640.7 - PhraseModel_1 = -3757.4 - PhraseModel_2 = -1133.1 - PhraseModel_3 = +1837.3 - PhraseModel_4 = -3534.3 - PhraseModel_5 = +2308 - PhraseModel_6 = +1677 - PassThrough = -6222 + Glue = -122.1 + WordPenalty = +83.689 + LanguageModel = +233.23 + LanguageModel_OOV = -145.1 + PhraseModel_0 = +150.72 + PhraseModel_1 = -272.84 + PhraseModel_2 = -418.36 + PhraseModel_3 = +181.63 + PhraseModel_4 = -289.47 + PhraseModel_5 = +140.3 + PhraseModel_6 = +3.5 + PassThrough = -109.7 --- - 1best avg score: 0.30764 (+0.12891) - 1best avg model score: -2.5042e+05 (-3.3882e+05) - avg # pairs: 725.9 (meaningless) - avg # rank err: 725.9 + 1best avg score: 0.17399 (+0.004325) + 1best avg model score: 4936.9 (-24937) + avg # pairs: 662.4 + avg # rank err: 0 (meaningless) avg # margin viol: 0 - non0 feature count: 1499 + k-best loss imp: 100% + non0 feature count: 1240 avg list sz: 91.3 - avg f count: 114.34 -(time 0.32 min, 1.9 s/S) + avg f count: 125.11 +(time 0.27 min, 1.6 s/S) + +Iteration #3 of 3. + . 10 +WEIGHTS + Glue = -157.4 + WordPenalty = -1.7372 + LanguageModel = +686.18 + LanguageModel_OOV = -399.7 + PhraseModel_0 = -39.876 + PhraseModel_1 = -341.96 + PhraseModel_2 = -318.67 + PhraseModel_3 = +105.08 + PhraseModel_4 = -290.27 + PhraseModel_5 = -48.6 + PhraseModel_6 = -43.6 + PassThrough = -298.5 + --- + 1best avg score: 0.30742 (+0.13343) + 1best avg model score: -15393 (-20329) + avg # pairs: 623.8 + avg # rank err: 0 (meaningless) + avg # margin viol: 0 + k-best loss imp: 100% + non0 feature count: 1776 + avg list sz: 91.3 + avg f count: 118.58 +(time 0.28 min, 1.7 s/S) Writing weights file to '-' ... done --- -Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764]. -This took 0.65 min. +Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742]. +This took 0.9 min. diff --git a/training/dtrain/examples/standard/nc-wmt11.gz b/training/dtrain/examples/standard/nc-wmt11.gz Binary files differnew file mode 100644 index 00000000..c39c5aef --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.gz |