diff options
| author | Patrick Simianer <p@simianer.de> | 2013-11-26 11:11:17 +0100 | 
|---|---|---|
| committer | Patrick Simianer <p@simianer.de> | 2013-11-26 11:11:17 +0100 | 
| commit | e346cd5cd3c5d7164819c35e485a9850d825996e (patch) | |
| tree | 6c09b737569ac8471fa2a6dfda71230c554be0c8 /training/crf | |
| parent | 95a69136109665881be66ff4e8f9eca6abb08477 (diff) | |
| parent | 62a2526e69eb1570bf349763fc8bb65179337918 (diff) | |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'training/crf')
| -rw-r--r-- | training/crf/Makefile.am | 4 | ||||
| -rw-r--r-- | training/crf/mpi_adagrad_optimize.cc | 394 | ||||
| -rw-r--r-- | training/crf/mpi_batch_optimize.cc | 6 | 
3 files changed, 401 insertions, 3 deletions
| diff --git a/training/crf/Makefile.am b/training/crf/Makefile.am index 4a8c30fd..cd82161f 100644 --- a/training/crf/Makefile.am +++ b/training/crf/Makefile.am @@ -1,5 +1,6 @@  bin_PROGRAMS = \    mpi_batch_optimize \ +  mpi_adagrad_optimize \    mpi_compute_cllh \    mpi_extract_features \    mpi_extract_reachable \ @@ -10,6 +11,9 @@ bin_PROGRAMS = \  mpi_baum_welch_SOURCES = mpi_baum_welch.cc  mpi_baum_welch_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a -lz +mpi_adagrad_optimize_SOURCES = mpi_adagrad_optimize.cc cllh_observer.cc cllh_observer.h +mpi_adagrad_optimize_LDADD = ../../training/utils/libtraining_utils.a ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a -lz +  mpi_online_optimize_SOURCES = mpi_online_optimize.cc  mpi_online_optimize_LDADD = ../../training/utils/libtraining_utils.a ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a -lz diff --git a/training/crf/mpi_adagrad_optimize.cc b/training/crf/mpi_adagrad_optimize.cc new file mode 100644 index 00000000..af963e3a --- /dev/null +++ b/training/crf/mpi_adagrad_optimize.cc @@ -0,0 +1,394 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <cassert> +#include <cmath> +#include <ctime> + +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> +#include <boost/shared_ptr.hpp> + +#include "config.h" +#include "stringlib.h" +#include "verbose.h" +#include "cllh_observer.h" +#include "hg.h" +#include "prob.h" +#include "inside_outside.h" +#include "ff_register.h" +#include "decoder.h" +#include "filelib.h" +#include "online_optimizer.h" +#include "fdict.h" +#include "weights.h" +#include "sparse_vector.h" +#include "sampler.h" + +#ifdef HAVE_MPI +#include <boost/mpi/timer.hpp> +#include <boost/mpi.hpp> +namespace mpi = boost::mpi; +#endif + +using namespace std; +namespace po = boost::program_options; + +bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { +  po::options_description opts("Configuration options"); +  opts.add_options() +        ("weights,w",po::value<string>(), "Initial feature weights") +        ("training_data,d",po::value<string>(), "Training data corpus") +        ("test_data,t",po::value<string>(), "(optional) Test data") +        ("decoder_config,c",po::value<string>(), "Decoder configuration file") +        ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(8), +            "Number of training instances evaluated per processor in each minibatch") +        ("max_passes", po::value<double>()->default_value(20.0), "Maximum number of passes through the data") +        ("max_walltime", po::value<unsigned>(), "Walltime to run (in minutes)") +        ("write_every_n_minibatches", po::value<unsigned>()->default_value(100), "Write weights every N minibatches processed") +        ("random_seed,S", po::value<uint32_t>(), "Random seed") +        ("regularization,r", po::value<string>()->default_value("none"), +            "Regularization 'none', 'l1', or 'l2'") +        ("regularization_strength,C", po::value<double>(), "Regularization strength") +        ("eta,e", po::value<double>()->default_value(1.0), "Initial learning rate (eta)"); +  po::options_description clo("Command line options"); +  clo.add_options() +        ("config", po::value<string>(), "Configuration file") +        ("help,h", "Print this help message and exit"); +  po::options_description dconfig_options, dcmdline_options; +  dconfig_options.add(opts); +  dcmdline_options.add(opts).add(clo); +   +  po::store(parse_command_line(argc, argv, dcmdline_options), *conf); +  if (conf->count("config")) { +    ifstream config((*conf)["config"].as<string>().c_str()); +    po::store(po::parse_config_file(config, dconfig_options), *conf); +  } +  po::notify(*conf); + +  if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) { +    cerr << dcmdline_options << endl; +    return false; +  } +  return true; +} + +void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) { +  ReadFile rf(fname); +  istream& in = *rf.stream(); +  string line; +  int id = 0; +  while(getline(in, line)) { +    if (id % size == rank) { +      c->push_back(line); +      order->push_back(id); +    } +    ++id; +  } +} + +static const double kMINUS_EPSILON = -1e-6; + +struct TrainingObserver : public DecoderObserver { +  void Reset() { +    acc_grad.clear(); +    acc_obj = 0; +    total_complete = 0; +  }  + +  virtual void NotifyDecodingStart(const SentenceMetadata&) { +    cur_model_exp.clear(); +    cur_obj = 0; +    state = 1; +  } + +  // compute model expectations, denominator of objective +  virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { +    assert(state == 1); +    state = 2; +    const prob_t z = InsideOutside<prob_t, +                                   EdgeProb, +                                   SparseVector<prob_t>, +                                   EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); +    cur_obj = log(z); +    cur_model_exp /= z; +  } + +  // compute "empirical" expectations, numerator of objective +  virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) { +    assert(state == 2); +    state = 3; +    SparseVector<prob_t> ref_exp; +    const prob_t ref_z = InsideOutside<prob_t, +                                       EdgeProb, +                                       SparseVector<prob_t>, +                                       EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); +    ref_exp /= ref_z; + +    double log_ref_z; +#if 0 +    if (crf_uniform_empirical) { +      log_ref_z = ref_exp.dot(feature_weights); +    } else { +      log_ref_z = log(ref_z); +    } +#else +    log_ref_z = log(ref_z); +#endif + +    // rounding errors means that <0 is too strict +    if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { +      cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; +      exit(1); +    } +    assert(!std::isnan(log_ref_z)); +    ref_exp -= cur_model_exp; +    acc_grad += ref_exp; +    acc_obj += (cur_obj - log_ref_z); +  } + +  virtual void NotifyDecodingComplete(const SentenceMetadata&) { +    if (state == 3) { +      ++total_complete; +    } else { +    } +  } + +  void GetGradient(SparseVector<double>* g) const { +    g->clear(); +#if HAVE_CXX11 +    for (auto& gi : acc_grad) { +#else +    for (FastSparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) { +      pair<unsigned, double>& gi = *it; +#endif +      g->set_value(gi.first, -gi.second.as_float()); +    } +  } + +  int total_complete; +  SparseVector<prob_t> cur_model_exp; +  SparseVector<prob_t> acc_grad; +  double acc_obj; +  double cur_obj; +  int state; +}; + +#ifdef HAVE_MPI +namespace boost { namespace mpi { +  template<> +  struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >  +    : mpl::true_ { }; +} } // end namespace boost::mpi +#endif + +class AdaGradOptimizer { + public: +  explicit AdaGradOptimizer(double e) : +      eta(e), +      G() {} +  void update(const SparseVector<double>& g, vector<double>* x) { +    if (x->size() > G.size()) G.resize(x->size(), 0.0); +#if HAVE_CXX11 +    for (auto& gi : g) { +#else +    for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it) { +      const pair<unsigned,double>& gi = *it; +#endif +      if (gi.second) { +        G[gi.first] += gi.second * gi.second; +        (*x)[gi.first] -= eta / sqrt(G[gi.first]) * gi.second; +      } +    } +  } +  const double eta; +  vector<double> G; +}; + +class AdaGradL1Optimizer { + public: +  explicit AdaGradL1Optimizer(double e, double l) : +      t(), +      eta(e), +      lambda(l), +      G() {} +  void update(const SparseVector<double>& g, vector<double>* x) { +    t += 1.0; +    if (x->size() > G.size()) { +      G.resize(x->size(), 0.0); +      u.resize(x->size(), 0.0); +    } +#if HAVE_CXX11 +    for (auto& gi : g) { +#else +    for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it) { +      const pair<unsigned,double>& gi = *it; +#endif +      if (gi.second) { +        u[gi.first] += gi.second; +        G[gi.first] += gi.second * gi.second; +        double z = fabs(u[gi.first] / t) - lambda; +        double s = 1; +        if (u[gi.first] > 0) s = -1; +        if (z > 0 && G[gi.first]) +          (*x)[gi.first] = eta * s * z * t / sqrt(G[gi.first]); +        else +          (*x)[gi.first] = 0.0; +      } +    } +  } +  double t; +  const double eta; +  const double lambda; +  vector<double> G, u; +}; + +unsigned non_zeros(const vector<double>& x) { +  unsigned nz = 0; +  for (unsigned i = 0; i < x.size(); ++i) +    if (x[i]) ++nz; +  return nz; +} + +int main(int argc, char** argv) { +#ifdef HAVE_MPI +  mpi::environment env(argc, argv); +  mpi::communicator world; +  const int size = world.size();  +  const int rank = world.rank(); +#else +  const int size = 1; +  const int rank = 0; +#endif +  if (size > 1) SetSilent(true);  // turn off verbose decoder output +  register_feature_functions(); + +  po::variables_map conf; +  if (!InitCommandLine(argc, argv, &conf)) +    return 1; + +  ReadFile ini_rf(conf["decoder_config"].as<string>()); +  Decoder decoder(ini_rf.stream()); + +  // load initial weights +  vector<weight_t> init_weights; +  if (conf.count("input_weights")) +    Weights::InitFromFile(conf["input_weights"].as<string>(), &init_weights); + +  vector<string> corpus, test_corpus; +  vector<int> ids; +  ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); +  assert(corpus.size() > 0); +  if (conf.count("test_data")) +    ReadTrainingCorpus(conf["test_data"].as<string>(), rank, size, &corpus, &ids); + +  const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>(); +  if (size_per_proc > corpus.size()) { +    cerr << "Minibatch size must be smaller than corpus size!\n"; +    return 1; +  } +  const double minibatch_size = size_per_proc * size; + +  size_t total_corpus_size = 0; +#ifdef HAVE_MPI +  reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0); +#else +  total_corpus_size = corpus.size(); +#endif + +  if (rank == 0) +    cerr << "Total corpus size: " << total_corpus_size << endl; + +  boost::shared_ptr<MT19937> rng; +  if (conf.count("random_seed")) +    rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); +  else +    rng.reset(new MT19937); + +  double passes_per_minibatch = static_cast<double>(size_per_proc) / total_corpus_size; + +  int write_weights_every_ith = conf["write_every_n_minibatches"].as<unsigned>(); + +  unsigned max_iteration = conf["max_passes"].as<double>() / passes_per_minibatch; +  ++max_iteration; +  if (rank == 0) +    cerr << "Max passes through data = " << conf["max_passes"].as<double>() << endl +         << "    --> max minibatches = " << max_iteration << endl; +  unsigned timeout = 0; +  if (conf.count("max_walltime")) +    timeout = 60 * conf["max_walltime"].as<unsigned>(); +  vector<weight_t>& lambdas = decoder.CurrentWeightVector(); +  if (init_weights.size()) { +    lambdas.swap(init_weights); +    init_weights.clear(); +  } + +  //AdaGradOptimizer adagrad(conf["eta"].as<double>()); +  AdaGradL1Optimizer adagrad(conf["eta"].as<double>(), conf["regularization_strength"].as<double>()); +  int iter = -1; +  bool converged = false; + +  TrainingObserver observer; +  ConditionalLikelihoodObserver cllh_observer; + +  const time_t start_time = time(NULL); +  while (!converged) { +#ifdef HAVE_MPI +      mpi::timer timer; +#endif +      ++iter; +      observer.Reset(); +      if (rank == 0) { +        converged = (iter == max_iteration); +        string fname = "weights.cur.gz"; +        if (iter % write_weights_every_ith == 0) { +          ostringstream o; o << "weights." << iter << ".gz"; +          fname = o.str(); +        } +        const time_t cur_time = time(NULL); +        if (timeout && ((cur_time - start_time) > timeout)) { +          converged = true; +          fname = "weights.final.gz"; +        } +        ostringstream vv; +        double minutes = (cur_time - start_time) / 60.0; +        vv << "total walltime=" << minutes << "min iter=" << iter << "  minibatch=" << size_per_proc << " sentences/proc x " << size << " procs.   num_feats=" << non_zeros(lambdas) << '/' << FD::NumFeats() << "   passes_thru_data=" << (iter * size_per_proc / static_cast<double>(corpus.size())); +        const string svv = vv.str(); +        cerr << svv << endl; +        Weights::WriteToFile(fname, lambdas, true, &svv); +      } + +      for (int i = 0; i < size_per_proc; ++i) { +        int ei = corpus.size() * rng->next(); +        int id = ids[ei]; +        decoder.SetId(id); +        decoder.Decode(corpus[ei], &observer); +      } +      SparseVector<double> local_grad, g; +      observer.GetGradient(&local_grad); +#ifdef HAVE_MPI +      reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0); +#else +      g.swap(local_grad); +#endif +      local_grad.clear(); +      if (rank == 0) { +        g /= minibatch_size; +        lambdas.resize(FD::NumFeats(), 0.0); // might have seen new features +        adagrad.update(g, &lambdas); +        Weights::SanityCheck(lambdas); +        Weights::ShowLargestFeatures(lambdas); +      } +#ifdef HAVE_MPI +      broadcast(world, lambdas, 0); +      broadcast(world, converged, 0); +      world.barrier(); +      if (rank == 0) { cerr << "  ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } +#endif +  } +  cerr << "CONVERGED = " << converged << endl; +  cerr << "EXITING...\n"; +  return 0; +} + diff --git a/training/crf/mpi_batch_optimize.cc b/training/crf/mpi_batch_optimize.cc index 2eff07e4..da1845b1 100644 --- a/training/crf/mpi_batch_optimize.cc +++ b/training/crf/mpi_batch_optimize.cc @@ -97,14 +97,14 @@ struct TrainingObserver : public DecoderObserver {        (*g)[it->first] = it->second.as_float();    } -  virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { +  virtual void NotifyDecodingStart(const SentenceMetadata&) {      cur_model_exp.clear();      cur_obj = 0;      state = 1;    }    // compute model expectations, denominator of objective -  virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { +  virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {      assert(state == 1);      state = 2;      const prob_t z = InsideOutside<prob_t, @@ -149,7 +149,7 @@ struct TrainingObserver : public DecoderObserver {      trg_words += smeta.GetReference().size();    } -  virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { +  virtual void NotifyDecodingComplete(const SentenceMetadata&) {      if (state == 3) {        ++total_complete;      } else { | 
