diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:32 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:32 -0400 |
commit | 07ea7b64b6f85e5798a8068453ed9fd2b97396db (patch) | |
tree | 644496a1690d84d82a396bbc1e39160788beb2cd /gi/posterior-regularisation/train_pr_parallel.py | |
parent | 37b9e45e5cb29d708f7249dbe0b0fb27685282a0 (diff) | |
parent | a36fcc5d55c1de84ae68c1091ebff2b1c32dc3b7 (diff) |
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'gi/posterior-regularisation/train_pr_parallel.py')
-rw-r--r-- | gi/posterior-regularisation/train_pr_parallel.py | 333 |
1 files changed, 0 insertions, 333 deletions
diff --git a/gi/posterior-regularisation/train_pr_parallel.py b/gi/posterior-regularisation/train_pr_parallel.py deleted file mode 100644 index 3b9cefed..00000000 --- a/gi/posterior-regularisation/train_pr_parallel.py +++ /dev/null @@ -1,333 +0,0 @@ -import sys -import scipy.optimize -from numpy import * -from numpy.random import random, seed - -# -# Step 1: load the concordance counts -# - -edges_phrase_to_context = [] -edges_context_to_phrase = [] -types = {} -context_types = {} -num_edges = 0 - -for line in sys.stdin: - phrase, rest = line.strip().split('\t') - parts = rest.split('|||') - edges_phrase_to_context.append((phrase, [])) - for i in range(0, len(parts), 2): - context, count = parts[i:i+2] - - ctx = tuple(filter(lambda x: x != '<PHRASE>', context.split())) - cnt = int(count.strip()[2:]) - edges_phrase_to_context[-1][1].append((ctx, cnt)) - - cid = context_types.get(ctx, len(context_types)) - if cid == len(context_types): - context_types[ctx] = cid - edges_context_to_phrase.append((ctx, [])) - edges_context_to_phrase[cid][1].append((phrase, cnt)) - - for token in ctx: - types.setdefault(token, len(types)) - for token in phrase.split(): - types.setdefault(token, len(types)) - - num_edges += 1 - -# -# Step 2: initialise the model parameters -# - -num_tags = 25 -num_types = len(types) -num_phrases = len(edges_phrase_to_context) -num_contexts = len(edges_context_to_phrase) -delta = float(sys.argv[1]) -assert sys.argv[2] in ('local', 'global') -local = sys.argv[2] == 'local' -if len(sys.argv) >= 2: - seed(int(sys.argv[3])) - -print 'Read in', num_edges, 'edges', num_phrases, 'phrases', num_contexts, 'contexts and', len(types), 'word types' - -def normalise(a): - return a / float(sum(a)) - -# Pr(tag | phrase) -tagDist = [normalise(random(num_tags)+1) for p in range(num_phrases)] -# Pr(context at pos i = w | tag) indexed by i, tag, word -contextWordDist = [[normalise(random(num_types)+1) for t in range(num_tags)] for i in range(4)] - -# -# Step 3: expectation maximisation -# - -class GlobalDualObjective: - """ - Objective, log(z), for all phrases s.t. lambda >= 0, sum_c lambda_pct <= scale - """ - - def __init__(self, scale): - self.scale = scale - self.posterior = zeros((num_edges, num_tags)) - self.q = zeros((num_edges, num_tags)) - self.llh = 0 - - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for context, count in edges: - for t in range(num_tags): - prob = tagDist[j][t] - for k, token in enumerate(context): - prob *= contextWordDist[k][t][types[token]] - self.posterior[index,t] = prob - z = sum(self.posterior[index,:]) - self.posterior[index,:] /= z - self.llh += log(z) * count - index += 1 - - def objective(self, ls): - ls = ls.reshape((num_edges, num_tags)) - logz = 0 - - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for context, count in edges: - for t in range(num_tags): - self.q[index,t] = self.posterior[index,t] * exp(-ls[index,t]) - local_z = sum(self.q[index,:]) - self.q[index,:] /= local_z - logz += log(local_z) * count - index += 1 - - return logz - - # FIXME: recomputes q many more times than necessary - - def gradient(self, ls): - ls = ls.reshape((num_edges, num_tags)) - gradient = zeros((num_edges, num_tags)) - - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for context, count in edges: - for t in range(num_tags): - self.q[index,t] = self.posterior[index,t] * exp(-ls[index,t]) - local_z = sum(self.q[index,:]) - self.q[index,:] /= local_z - for t in range(num_tags): - gradient[index,t] -= self.q[index,t] * count - index += 1 - - return gradient.ravel() - - def constraints(self, ls): - ls = ls.reshape((num_edges, num_tags)) - cons = ones((num_phrases, num_tags)) * self.scale - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for i, (context, count) in enumerate(edges): - for t in range(num_tags): - cons[j,t] -= ls[index,t] * count - index += 1 - return cons.ravel() - - def constraints_gradient(self, ls): - ls = ls.reshape((num_edges, num_tags)) - gradient = zeros((num_phrases, num_tags, num_edges, num_tags)) - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for i, (context, count) in enumerate(edges): - for t in range(num_tags): - gradient[j,t,index,t] -= count - index += 1 - return gradient.reshape((num_phrases*num_tags, num_edges*num_tags)) - - def optimize(self): - ls = zeros(num_edges * num_tags) - #print '\tpre lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) - ls = scipy.optimize.fmin_slsqp(self.objective, ls, - bounds=[(0, self.scale)] * num_edges * num_tags, - f_ieqcons=self.constraints, - fprime=self.gradient, - fprime_ieqcons=self.constraints_gradient, - iprint=0) # =2 for verbose - #print '\tpost lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) - - # returns llh, kl and l1lmax contribution - l1lmax = 0 - index = 0 - for j, (phrase, edges) in enumerate(edges_phrase_to_context): - for t in range(num_tags): - lmax = None - for i, (context, count) in enumerate(edges): - lmax = max(lmax, self.q[index+i,t]) - l1lmax += lmax - index += len(edges) - - return self.llh, -self.objective(ls) + dot(ls, self.gradient(ls)), l1lmax - -class LocalDualObjective: - """ - Local part of objective, log(z) relevant to lambda_p**. - Optimised subject to lambda >= 0, sum_c lambda_pct <= scale forall t - """ - - def __init__(self, phraseId, scale): - self.phraseId = phraseId - self.scale = scale - edges = edges_phrase_to_context[self.phraseId][1] - self.posterior = zeros((len(edges), num_tags)) - self.q = zeros((len(edges), num_tags)) - self.llh = 0 - - for i, (context, count) in enumerate(edges): - for t in range(num_tags): - prob = tagDist[phraseId][t] - for j, token in enumerate(context): - prob *= contextWordDist[j][t][types[token]] - self.posterior[i,t] = prob - z = sum(self.posterior[i,:]) - self.posterior[i,:] /= z - self.llh += log(z) * count - - def objective(self, ls): - edges = edges_phrase_to_context[self.phraseId][1] - ls = ls.reshape((len(edges), num_tags)) - logz = 0 - - for i, (context, count) in enumerate(edges): - for t in range(num_tags): - self.q[i,t] = self.posterior[i,t] * exp(-ls[i,t]) - local_z = sum(self.q[i,:]) - self.q[i,:] /= local_z - logz += log(local_z) * count - - return logz - - # FIXME: recomputes q many more times than necessary - - def gradient(self, ls): - edges = edges_phrase_to_context[self.phraseId][1] - ls = ls.reshape((len(edges), num_tags)) - gradient = zeros((len(edges), num_tags)) - - for i, (context, count) in enumerate(edges): - for t in range(num_tags): - self.q[i,t] = self.posterior[i,t] * exp(-ls[i,t]) - local_z = sum(self.q[i,:]) - self.q[i,:] /= local_z - for t in range(num_tags): - gradient[i,t] -= self.q[i,t] * count - - return gradient.ravel() - - def constraints(self, ls): - edges = edges_phrase_to_context[self.phraseId][1] - ls = ls.reshape((len(edges), num_tags)) - cons = ones(num_tags) * self.scale - for t in range(num_tags): - for i, (context, count) in enumerate(edges): - cons[t] -= ls[i,t] * count - return cons - - def constraints_gradient(self, ls): - edges = edges_phrase_to_context[self.phraseId][1] - ls = ls.reshape((len(edges), num_tags)) - gradient = zeros((num_tags, len(edges), num_tags)) - for t in range(num_tags): - for i, (context, count) in enumerate(edges): - gradient[t,i,t] -= count - return gradient.reshape((num_tags, len(edges)*num_tags)) - - def optimize(self, ls=None): - edges = edges_phrase_to_context[self.phraseId][1] - if ls == None: - ls = zeros(len(edges) * num_tags) - #print '\tpre lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) - ls = scipy.optimize.fmin_slsqp(self.objective, ls, - bounds=[(0, self.scale)] * len(edges) * num_tags, - f_ieqcons=self.constraints, - fprime=self.gradient, - fprime_ieqcons=self.constraints_gradient, - iprint=0) # =2 for verbose - #print '\tlambda', list(ls) - #print '\tpost lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) - - # returns llh, kl and l1lmax contribution - l1lmax = 0 - for t in range(num_tags): - lmax = None - for i, (context, count) in enumerate(edges): - lmax = max(lmax, self.q[i,t]) - l1lmax += lmax - - return self.llh, -self.objective(ls) + dot(ls, self.gradient(ls)), l1lmax, ls - -ls = [None] * num_phrases -for iteration in range(20): - tagCounts = [zeros(num_tags) for p in range(num_phrases)] - contextWordCounts = [[zeros(num_types) for t in range(num_tags)] for i in range(4)] - - # E-step - llh = kl = l1lmax = 0 - if local: - for p in range(num_phrases): - o = LocalDualObjective(p, delta) - #print '\toptimising lambda for phrase', p, '=', edges_phrase_to_context[p][0] - #print '\toptimising lambda for phrase', p, 'ls', ls[p] - obj = o.optimize(ls[p]) - #print '\tphrase', p, 'deltas', obj - llh += obj[0] - kl += obj[1] - l1lmax += obj[2] - ls[p] = obj[3] - - edges = edges_phrase_to_context[p][1] - for j, (context, count) in enumerate(edges): - for t in range(num_tags): - tagCounts[p][t] += count * o.q[j,t] - for i in range(4): - for t in range(num_tags): - contextWordCounts[i][t][types[context[i]]] += count * o.q[j,t] - - #print 'iteration', iteration, 'LOCAL objective', (llh + kl + delta * l1lmax), 'llh', llh, 'kl', kl, 'l1lmax', l1lmax - else: - o = GlobalDualObjective(delta) - obj = o.optimize() - llh, kl, l1lmax = o.optimize() - - index = 0 - for p, (phrase, edges) in enumerate(edges_phrase_to_context): - for context, count in edges: - for t in range(num_tags): - tagCounts[p][t] += count * o.q[index,t] - for i in range(4): - for t in range(num_tags): - contextWordCounts[i][t][types[context[i]]] += count * o.q[index,t] - index += 1 - - print 'iteration', iteration, 'objective', (llh - kl - delta * l1lmax), 'llh', llh, 'kl', kl, 'l1lmax', l1lmax - - # M-step - for p in range(num_phrases): - tagDist[p] = normalise(tagCounts[p]) - for i in range(4): - for t in range(num_tags): - contextWordDist[i][t] = normalise(contextWordCounts[i][t]) - -for p, (phrase, ccs) in enumerate(edges_phrase_to_context): - for context, count in ccs: - conditionals = zeros(num_tags) - for t in range(num_tags): - prob = tagDist[p][t] - for i in range(4): - prob *= contextWordDist[i][t][types[context[i]]] - conditionals[t] = prob - cz = sum(conditionals) - conditionals /= cz - - print '%s\t%s ||| C=%d |||' % (phrase, context, argmax(conditionals)), conditionals |