diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
commit | a5a92ebe23c5819ed104313426012011e32539da (patch) | |
tree | 3416818c758d5ece4e71fe522c571e75ea04f100 /gi/pf/cbgi.cc | |
parent | b88332caac2cbe737c99b8098813f868ca876d8b (diff) | |
parent | 78baccbb4231bb84a456702d4f574f8e601a8182 (diff) |
finalized merge
Diffstat (limited to 'gi/pf/cbgi.cc')
-rw-r--r-- | gi/pf/cbgi.cc | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/gi/pf/cbgi.cc b/gi/pf/cbgi.cc new file mode 100644 index 00000000..97f1ba34 --- /dev/null +++ b/gi/pf/cbgi.cc @@ -0,0 +1,330 @@ +#include <queue> +#include <sstream> +#include <iostream> + +#include <boost/unordered_map.hpp> +#include <boost/functional/hash.hpp> + +#include "sampler.h" +#include "filelib.h" +#include "hg_io.h" +#include "hg.h" +#include "ccrp_nt.h" +#include "trule.h" +#include "inside_outside.h" + +using namespace std; +using namespace std::tr1; + +double log_poisson(unsigned x, const double& lambda) { + assert(lambda > 0.0); + return log(lambda) * x - lgamma(x + 1) - lambda; +} + +double log_decay(unsigned x, const double& b) { + assert(b > 1.0); + assert(x > 0); + return log(b - 1) - x * log(b); +} + +struct SimpleBase { + SimpleBase(unsigned esize, unsigned fsize, unsigned ntsize = 144) : + uniform_e(-log(esize)), + uniform_f(-log(fsize)), + uniform_nt(-log(ntsize)) { + } + + // binomial coefficient + static double choose(unsigned n, unsigned k) { + return exp(lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1)); + } + + // count the number of patterns of terminals and NTs in the rule, given elen and flen + static double log_number_of_patterns(const unsigned flen, const unsigned elen) { + static vector<vector<double> > counts; + if (elen >= counts.size()) counts.resize(elen + 1); + if (flen >= counts[elen].size()) counts[elen].resize(flen + 1); + double& count = counts[elen][flen]; + if (count) return log(count); + const unsigned max_arity = min(elen, flen); + for (unsigned a = 0; a <= max_arity; ++a) + count += choose(elen, a) * choose(flen, a); + return log(count); + } + + // return logp0 of rule | LHS + double operator()(const TRule& rule) const { + const unsigned flen = rule.f_.size(); + const unsigned elen = rule.e_.size(); +#if 0 + double p = 0; + p += log_poisson(flen, 0.5); // flen ~Pois(0.5) + p += log_poisson(elen, flen); // elen | flen ~Pois(flen) + p -= log_number_of_patterns(flen, elen); // pattern | flen,elen ~Uniform + for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS + if (rule.f_[i] <= 0) // according to pattern + p += uniform_nt; // draw NT ~Uniform + else + p += uniform_f; // draw f terminal ~Uniform + } + p -= lgamma(rule.Arity() + 1); // draw permutation ~Uniform + for (unsigned i = 0; i < elen; ++i) { // for each position in e-RHS + if (rule.e_[i] > 0) // according to pattern + p += uniform_e; // draw e|f term ~Uniform + // TODO this should prob be model 1 + } +#else + double p = 0; + bool is_abstract = rule.f_[0] <= 0; + p += log(0.5); + if (is_abstract) { + if (flen == 2) p += log(0.99); else p += log(0.01); + } else { + p += log_decay(flen, 3); + } + + for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS + if (rule.f_[i] <= 0) // according to pattern + p += uniform_nt; // draw NT ~Uniform + else + p += uniform_f; // draw f terminal ~Uniform + } +#endif + return p; + } + const double uniform_e; + const double uniform_f; + const double uniform_nt; + vector<double> arities; +}; + +MT19937* rng = NULL; + +template <typename Base> +struct MHSamplerEdgeProb { + MHSamplerEdgeProb(const Hypergraph& hg, + const map<int, CCRP_NoTable<TRule> >& rdp, + const Base& logp0, + const bool exclude_multiword_terminals) : edge_probs(hg.edges_.size()) { + for (int i = 0; i < edge_probs.size(); ++i) { + const TRule& rule = *hg.edges_[i].rule_; + const map<int, CCRP_NoTable<TRule> >::const_iterator it = rdp.find(rule.lhs_); + assert(it != rdp.end()); + const CCRP_NoTable<TRule>& crp = it->second; + edge_probs[i].logeq(crp.logprob(rule, logp0(rule))); + if (exclude_multiword_terminals && rule.f_[0] > 0 && rule.f_.size() > 1) + edge_probs[i] = prob_t::Zero(); + } + } + inline prob_t operator()(const Hypergraph::Edge& e) const { + return edge_probs[e.id_]; + } + prob_t DerivationProb(const vector<int>& d) const { + prob_t p = prob_t::One(); + for (unsigned i = 0; i < d.size(); ++i) + p *= edge_probs[d[i]]; + return p; + } + vector<prob_t> edge_probs; +}; + +template <typename Base> +struct ModelAndData { + ModelAndData() : + base_lh(prob_t::One()), + logp0(10000, 10000), + mh_samples(), + mh_rejects() {} + + void SampleCorpus(const string& hgpath, int i); + void ResampleHyperparameters() { + for (map<int, CCRP_NoTable<TRule> >::iterator it = rules.begin(); it != rules.end(); ++it) + it->second.resample_hyperparameters(rng); + } + + CCRP_NoTable<TRule>& RuleCRP(int lhs) { + map<int, CCRP_NoTable<TRule> >::iterator it = rules.find(lhs); + if (it == rules.end()) { + rules.insert(make_pair(lhs, CCRP_NoTable<TRule>(1,1))); + it = rules.find(lhs); + } + return it->second; + } + + void IncrementRule(const TRule& rule) { + CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_); + if (crp.increment(rule)) { + prob_t p; p.logeq(logp0(rule)); + base_lh *= p; + } + } + + void DecrementRule(const TRule& rule) { + CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_); + if (crp.decrement(rule)) { + prob_t p; p.logeq(logp0(rule)); + base_lh /= p; + } + } + + void DecrementDerivation(const Hypergraph& hg, const vector<int>& d) { + for (unsigned i = 0; i < d.size(); ++i) { + const TRule& rule = *hg.edges_[d[i]].rule_; + DecrementRule(rule); + } + } + + void IncrementDerivation(const Hypergraph& hg, const vector<int>& d) { + for (unsigned i = 0; i < d.size(); ++i) { + const TRule& rule = *hg.edges_[d[i]].rule_; + IncrementRule(rule); + } + } + + prob_t Likelihood() const { + prob_t p = prob_t::One(); + for (map<int, CCRP_NoTable<TRule> >::const_iterator it = rules.begin(); it != rules.end(); ++it) { + prob_t q; q.logeq(it->second.log_crp_prob()); + p *= q; + } + p *= base_lh; + return p; + } + + void ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_derivation); + + map<int, CCRP_NoTable<TRule> > rules; // [lhs] -> distribution over RHSs + prob_t base_lh; + SimpleBase logp0; + vector<vector<int> > samples; // sampled derivations + unsigned int mh_samples; + unsigned int mh_rejects; +}; + +template <typename Base> +void ModelAndData<Base>::SampleCorpus(const string& hgpath, int n) { + vector<Hypergraph> hgs(n); hgs.clear(); + boost::unordered_map<TRule, unsigned> acc; + map<int, unsigned> tot; + for (int i = 0; i < n; ++i) { + ostringstream os; + os << hgpath << '/' << i << ".json.gz"; + if (!FileExists(os.str())) continue; + hgs.push_back(Hypergraph()); + ReadFile rf(os.str()); + HypergraphIO::ReadFromJSON(rf.stream(), &hgs.back()); + } + cerr << "Read " << hgs.size() << " alignment hypergraphs.\n"; + samples.resize(hgs.size()); + const unsigned SAMPLES = 2000; + const unsigned burnin = 3 * SAMPLES / 4; + const unsigned every = 20; + for (unsigned s = 0; s < SAMPLES; ++s) { + if (s % 10 == 0) { + if (s > 0) { cerr << endl; ResampleHyperparameters(); } + cerr << "[" << s << " LLH=" << log(Likelihood()) << " REJECTS=" << ((double)mh_rejects / mh_samples) << " LHS's=" << rules.size() << " base=" << log(base_lh) << "] "; + } + cerr << '.'; + for (unsigned i = 0; i < hgs.size(); ++i) { + ResampleDerivation(hgs[i], &samples[i]); + if (s > burnin && s % every == 0) { + for (unsigned j = 0; j < samples[i].size(); ++j) { + const TRule& rule = *hgs[i].edges_[samples[i][j]].rule_; + ++acc[rule]; + ++tot[rule.lhs_]; + } + } + } + } + cerr << endl; + for (boost::unordered_map<TRule,unsigned>::iterator it = acc.begin(); it != acc.end(); ++it) { + cout << it->first << " MyProb=" << log(it->second)-log(tot[it->first.lhs_]) << endl; + } +} + +template <typename Base> +void ModelAndData<Base>::ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_deriv) { + vector<int> cur; + cur.swap(*sampled_deriv); + + const prob_t p_cur = Likelihood(); + DecrementDerivation(hg, cur); + if (cur.empty()) { + // first iteration, create restaurants + for (int i = 0; i < hg.edges_.size(); ++i) + RuleCRP(hg.edges_[i].rule_->lhs_); + } + MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, cur.empty()); +// MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, false); + const prob_t q_cur = wf.DerivationProb(cur); + vector<prob_t> node_probs; + Inside<prob_t, MHSamplerEdgeProb<SimpleBase> >(hg, &node_probs, wf); + queue<unsigned> q; + q.push(hg.nodes_.size() - 3); + while(!q.empty()) { + unsigned cur_node_id = q.front(); +// cerr << "NODE=" << cur_node_id << endl; + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge = 0; + if (num_in_edges == 1) { + sampled_edge = node.in_edges_[0]; + } else { + prob_t z; + assert(num_in_edges > 1); + SampleSet<prob_t> ss; + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = wf.edge_probs[edge.id_]; // edge proposal prob + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; + ss.add(p); +// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl; + z += p; + } +// for (unsigned j = 0; j < num_in_edges; ++j) { +// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; +// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl; +// } +// cerr << " --- \n"; + sampled_edge = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_deriv->push_back(sampled_edge); + const Hypergraph::Edge& edge = hg.edges_[sampled_edge]; + for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { + q.push(edge.tail_nodes_[j]); + } + } + IncrementDerivation(hg, *sampled_deriv); + +// cerr << "sampled derivation contains " << sampled_deriv->size() << " edges\n"; +// cerr << "DERIV:\n"; +// for (int i = 0; i < sampled_deriv->size(); ++i) { +// cerr << " " << hg.edges_[(*sampled_deriv)[i]].rule_->AsString() << endl; +// } + + if (cur.empty()) return; // accept first sample + + ++mh_samples; + // only need to do MH if proposal is different to current state + if (cur != *sampled_deriv) { + const prob_t q_prop = wf.DerivationProb(*sampled_deriv); + const prob_t p_prop = Likelihood(); + if (!rng->AcceptMetropolisHastings(p_prop, p_cur, q_prop, q_cur)) { + ++mh_rejects; + DecrementDerivation(hg, *sampled_deriv); + IncrementDerivation(hg, cur); + swap(cur, *sampled_deriv); + } + } +} + +int main(int argc, char** argv) { + rng = new MT19937; + ModelAndData<SimpleBase> m; + m.SampleCorpus("./hgs", 50); + // m.SampleCorpus("./btec/hgs", 5000); + return 0; +} + |