summaryrefslogtreecommitdiff
path: root/dpmert/line_optimizer.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
committerChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
commit1b8181bf0d6e9137e6b9ccdbe414aec37377a1a9 (patch)
tree33e5f3aa5abff1f41314cf8f6afbd2c2c40e4bfd /dpmert/line_optimizer.cc
parent7c4665949fb93fb3de402e4ce1d19bef67850d05 (diff)
major restructure of the training code
Diffstat (limited to 'dpmert/line_optimizer.cc')
-rw-r--r--dpmert/line_optimizer.cc114
1 files changed, 0 insertions, 114 deletions
diff --git a/dpmert/line_optimizer.cc b/dpmert/line_optimizer.cc
deleted file mode 100644
index 9cf33502..00000000
--- a/dpmert/line_optimizer.cc
+++ /dev/null
@@ -1,114 +0,0 @@
-#include "line_optimizer.h"
-
-#include <limits>
-#include <algorithm>
-
-#include "sparse_vector.h"
-#include "ns.h"
-
-using namespace std;
-
-typedef ErrorSurface::const_iterator ErrorIter;
-
-// sort by increasing x-ints
-struct IntervalComp {
- bool operator() (const ErrorIter& a, const ErrorIter& b) const {
- return a->x < b->x;
- }
-};
-
-double LineOptimizer::LineOptimize(
- const EvaluationMetric* metric,
- const vector<ErrorSurface>& surfaces,
- const LineOptimizer::ScoreType type,
- float* best_score,
- const double epsilon) {
- // cerr << "MIN=" << MINIMIZE_SCORE << " MAX=" << MAXIMIZE_SCORE << " MINE=" << type << endl;
- vector<ErrorIter> all_ints;
- for (vector<ErrorSurface>::const_iterator i = surfaces.begin();
- i != surfaces.end(); ++i) {
- const ErrorSurface& surface = *i;
- for (ErrorIter j = surface.begin(); j != surface.end(); ++j)
- all_ints.push_back(j);
- }
- sort(all_ints.begin(), all_ints.end(), IntervalComp());
- double last_boundary = all_ints.front()->x;
- SufficientStats acc;
- float& cur_best_score = *best_score;
- cur_best_score = (type == MAXIMIZE_SCORE ?
- -numeric_limits<float>::max() : numeric_limits<float>::max());
- bool left_edge = true;
- double pos = numeric_limits<double>::quiet_NaN();
- for (vector<ErrorIter>::iterator i = all_ints.begin();
- i != all_ints.end(); ++i) {
- const ErrorSegment& seg = **i;
- if (seg.x - last_boundary > epsilon) {
- float sco = metric->ComputeScore(acc);
- if ((type == MAXIMIZE_SCORE && sco > cur_best_score) ||
- (type == MINIMIZE_SCORE && sco < cur_best_score) ) {
- cur_best_score = sco;
- if (left_edge) {
- pos = seg.x - 0.1;
- left_edge = false;
- } else {
- pos = last_boundary + (seg.x - last_boundary) / 2;
- }
- //cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n";
- }
- // string xx = metric->DetailedScore(acc); cerr << "---- " << xx;
-#undef SHOW_ERROR_SURFACES
-#ifdef SHOW_ERROR_SURFACES
- cerr << "x=" << seg.x << "\ts=" << sco << "\n";
-#endif
- last_boundary = seg.x;
- }
- // cerr << "x-boundary=" << seg.x << "\n";
- //string x2; acc.Encode(&x2); cerr << " ACC: " << x2 << endl;
- //string x1; seg.delta.Encode(&x1); cerr << " DELTA: " << x1 << endl;
- acc += seg.delta;
- }
- float sco = metric->ComputeScore(acc);
- if ((type == MAXIMIZE_SCORE && sco > cur_best_score) ||
- (type == MINIMIZE_SCORE && sco < cur_best_score) ) {
- cur_best_score = sco;
- if (left_edge) {
- pos = 0;
- } else {
- pos = last_boundary + 1000.0;
- }
- }
- return pos;
-}
-
-void LineOptimizer::RandomUnitVector(const vector<int>& features_to_optimize,
- SparseVector<double>* axis,
- RandomNumberGenerator<boost::mt19937>* rng) {
- axis->clear();
- for (int i = 0; i < features_to_optimize.size(); ++i)
- axis->set_value(features_to_optimize[i], rng->NextNormal(0.0,1.0));
- (*axis) /= axis->l2norm();
-}
-
-void LineOptimizer::CreateOptimizationDirections(
- const vector<int>& features_to_optimize,
- int additional_random_directions,
- RandomNumberGenerator<boost::mt19937>* rng,
- vector<SparseVector<double> >* dirs
- , bool include_orthogonal
- ) {
- dirs->clear();
- typedef SparseVector<double> Dir;
- vector<Dir> &out=*dirs;
- int i=0;
- if (include_orthogonal)
- for (;i<features_to_optimize.size();++i) {
- Dir d;
- d.set_value(features_to_optimize[i],1.);
- out.push_back(d);
- }
- out.resize(i+additional_random_directions);
- for (;i<out.size();++i)
- RandomUnitVector(features_to_optimize, &out[i], rng);
- cerr << "Generated " << out.size() << " total axes to optimize along.\n";
-}
-