summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2015-07-22 12:42:57 +0200
committerPatrick Simianer <p@simianer.de>2015-07-22 12:42:57 +0200
commit0208c988890a72d4a3e80fb3cebf2abd03162050 (patch)
treec01402e63503dd3c0653647821084f45dde8878c
parente606d71a31038281d141022cd8c26a21cada3f27 (diff)
parent434a42b9d096abb436cac1d9788157c16b8ccab0 (diff)
merge dtrain_struct
-rw-r--r--training/dtrain/dtrain.cc6
-rw-r--r--training/dtrain/dtrain.h1
-rw-r--r--training/dtrain/example/standard/dtrain.ini5
-rw-r--r--training/dtrain/update.h38
4 files changed, 47 insertions, 3 deletions
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index b44f8f2b..9ca048c0 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -19,6 +19,7 @@ main(int argc, char** argv)
const weight_t eta = conf["learning_rate"].as<weight_t>();
const weight_t margin = conf["margin"].as<weight_t>();
const bool average = conf["average"].as<bool>();
+ const bool structured = conf["struct"].as<bool>();
const weight_t l1_reg = conf["l1_reg"].as<weight_t>();
const bool keep = conf["keep"].as<bool>();
const string output_fn = conf["output"].as<string>();
@@ -163,7 +164,10 @@ main(int argc, char** argv)
// get pairs and update
SparseVector<weight_t> updates;
- num_up += CollectUpdates(samples, updates, margin);
+ if (structured)
+ num_up += CollectUpdatesStruct(samples, updates);
+ else
+ num_up += CollectUpdates(samples, updates, margin);
SparseVector<weight_t> lambdas_copy;
if (l1_reg)
lambdas_copy = lambdas;
diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h
index cdc2f628..6633b4f9 100644
--- a/training/dtrain/dtrain.h
+++ b/training/dtrain/dtrain.h
@@ -60,6 +60,7 @@ dtrain_init(int argc, char** argv, po::variables_map* conf)
("input_weights,w", po::value<string>(), "input weights file")
("average,a", po::bool_switch()->default_value(true), "output average weights")
("keep,K", po::bool_switch()->default_value(false), "output a weight file per iteration")
+ ("struct,S", po::bool_switch()->default_value(false), "structured SGD with hope/fear")
("output,o", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
("print_weights,P", po::value<string>()->default_value("EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV"),
"list of weights to print after each iteration");
diff --git a/training/dtrain/example/standard/dtrain.ini b/training/dtrain/example/standard/dtrain.ini
index c52bef4a..dfb9b844 100644
--- a/training/dtrain/example/standard/dtrain.ini
+++ b/training/dtrain/example/standard/dtrain.ini
@@ -4,7 +4,8 @@ decoder_conf=./cdec.ini # config for cdec
iterations=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx.) BLEU4
-learning_rate=0.1 # learning rate
-margin=1.0 # margin for margin perceptron
+learning_rate=0.0001 # learning rate
+margin=0 # margin for margin perceptron
print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
score=nakov
+struct=true
diff --git a/training/dtrain/update.h b/training/dtrain/update.h
index d7224cca..6f42e5bd 100644
--- a/training/dtrain/update.h
+++ b/training/dtrain/update.h
@@ -10,6 +10,18 @@ _cmp(ScoredHyp a, ScoredHyp b)
return a.gold > b.gold;
}
+bool
+_cmpHope(ScoredHyp a, ScoredHyp b)
+{
+ return (a.model+a.gold) > (b.model+b.gold);
+}
+
+bool
+_cmpFear(ScoredHyp a, ScoredHyp b)
+{
+ return (a.model-a.gold) > (b.model-b.gold);
+}
+
inline bool
_good(ScoredHyp& a, ScoredHyp& b, weight_t margin)
{
@@ -20,6 +32,15 @@ _good(ScoredHyp& a, ScoredHyp& b, weight_t margin)
return false;
}
+inline bool
+_goodS(ScoredHyp& a, ScoredHyp& b)
+{
+ if (a.gold==b.gold)
+ return true;
+
+ return false;
+}
+
/*
* multipartite ranking
* sort (descending) by bleu
@@ -56,6 +77,23 @@ CollectUpdates(vector<ScoredHyp>* s,
return num_up;
}
+inline size_t
+CollectUpdatesStruct(vector<ScoredHyp>* s,
+ SparseVector<weight_t>& updates,
+ weight_t unused=-1)
+{
+ // hope
+ sort(s->begin(), s->end(), _cmpHope);
+ ScoredHyp hope = (*s)[0];
+ // fear
+ sort(s->begin(), s->end(), _cmpFear);
+ ScoredHyp fear = (*s)[0];
+ if (!_goodS(hope, fear))
+ updates += hope.f - fear.f;
+
+ return updates.size();
+}
+
} // namespace
#endif