summaryrefslogtreecommitdiff
path: root/tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2016-02-13 21:07:26 +0100
committerPatrick Simianer <p@simianer.de>2016-02-13 21:07:26 +0100
commit9978f54ca53386674587dd631a4d3de681a6a561 (patch)
tree9c7e888177fb659b2a751cf324e5f44a51472414 /tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
parentb6f85e839da79e5653c878a5d3b5b4aad9aed485 (diff)
tex
Diffstat (limited to 'tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex')
-rw-r--r--tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex2722
1 files changed, 2722 insertions, 0 deletions
diff --git a/tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex b/tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
new file mode 100644
index 0000000..9e885f3
--- /dev/null
+++ b/tex/.texmf/tex/generic/pgfplots/libs/tikzlibrarypgfplots.patchplots.code.tex
@@ -0,0 +1,2722 @@
+%--------------------------------------------
+%
+% Package pgfplots, library for higher order patch plots.
+% It contains advanced patch plots like quadratic triangles,
+% biquadratic quadrilaterals, coons patches and others.
+% The basic implementation for patches supports already line, triangle
+% and rectangle (=2 triangles) patches.
+%
+% Copyright 2007/2008/2009 by Christian Feuersänger.
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see <http://www.gnu.org/licenses/>.
+%
+%--------------------------------------------
+
+ % NOTES:
+ % In general, a Bezier spline C:[0,1] -> \R of order n fulfills
+ % C'(0) = n ( P_1 - P_0 ),
+ % C'(1) = n ( P_n - P_{n-1} ).
+ % For n=3 and given P_0 and P_3, I can directly compute P_1 and P_2 once I know
+ % the derivatives at t=0 and t=1.
+ %
+ %
+ %
+%--------------------------------------------------
+% 4-point Lagrange interpolation on {0,1/3,2/3,1}:
+% C(x) =
+% a * (1/3 - x)/(1/3) * (2/3-x)/(2/3) * (1-x) +
+% b * (0 - x)/(0 - 1/3) * (2/3-x)/(2/3-1/3) * (1-x)/(1-1/3) +
+% c * (0 - x)/(0 - 2/3) * (1/3-x)/(1/3-2/3) * (1-x)/(1-2/3) +
+% d * (0 - x)/(0 - 1) * (1/3-x)/(1/3-1) * (2/3-x) /(2/3-1)
+%
+%
+% Derivative:
+%
+% (-9*c + 2*d + 72*c*x - 18*d*x - 81*c*x^2 + 27*d*x^2 +
+% a*(-11 + 36*x - 27*x^2) + 9*b*(2 - 10*x + 9*x^2))/2
+%
+% bezier control points are
+% P1 = (-5*a)/6 + 3*b - (3*c)/2 + d/3
+% = -0.833333 a + 3. b - 1.5 c + 0.333333 d
+%
+% P2 = 0.333333 (0.5 (2. a - 9. b + 18. c - 11. d) + 3. d)
+% = 0.333333 a - 1.5 b + 3. c - 0.833333 d
+%--------------------------------------------------
+
+
+
+% A quadratic spline in the ordering
+%
+% <left> <right> <middle>
+%
+% where <left> is the function value at the left end of the spline
+% segmment, <right> the function value at the right end, and <middle>
+% the function value in the middle of the spline segment.
+\pgfplotsdeclarepatchclass{quadratic spline}{%
+ get dimension=\def\pgfplotsretval{1},
+ supports global path=\def\pgfplotsretval{1},
+ new=\def\pgfplotspatchclass@qspline@no{A},
+ set next vertex={%
+ % EXPECTED ORDERING: first 2 corners, then 1 mid nodes
+ % (interpolatory).
+ % defines \pgfplotspatchclass@qspline@A ... \pgfplotspatchclass@qspline@C (3 points)
+ \expandafter\edef\csname pgfplotspatchclass@qspline@\pgfplotspatchclass@qspline@no\endcsname{#1}%
+ \if C\pgfplotspatchclass@qspline@no
+ \def\pgfplotspatchclass@qspline@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@qspline@no\csname pgfpptchindexnext@\pgfplotspatchclass@qspline@no\endcsname
+ \fi
+ },
+ if current point can be first last={%
+ \pgfplots@loc@tmptrue
+ \if A\pgfplotspatchclass@qspline@no
+ % Ah - the current point is the 'C' point, i.e. the
+ % control point (we have advanced the '@no' counter)
+ \pgfplots@loc@tmpfalse
+ \fi
+ \ifpgfplots@loc@tmp
+ #1\relax%
+ \else
+ #2\relax
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qspline@C\endvertex #1%
+ },
+ fill path={%
+ \begingroup
+ % Draw the patch boundary using a bezier curves.
+ %
+ % Since I have lagrange points to describe the patch (i.e.
+ % points the patch passes through), I have to convert the
+ % lagrange representation to bezier.
+ %
+ % Furthermore, I convert to *cubic* bezier since pdf only
+ % supports cubic curves.
+ %
+ % See the docs for 'biquadratic::fill path' for more details,
+ % in does the same.
+ \def\pgfplots@edge{%
+ \ifx\pgfplotspatchclass@qspline@A\PA
+ \pgfplotsplothandlermesh@pathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}%
+ \fi
+ \pgfpathcurveto {%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ }{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ }{%
+ \expandafter\pgfplotspointpatchvertex\PC\endvertex
+ }%
+ }%
+ \let\PA=\pgfplotspatchclass@qspline@A
+ \let\PB=\pgfplotspatchclass@qspline@C
+ \let\PC=\pgfplotspatchclass@qspline@B
+ \pgfplots@edge
+ \pgfplotsplothandlermesh@setlastpoint{\expandafter\pgfplotspointpatchvertex\PC\endvertex}%
+ \endgroup
+ },
+ triangulate class=\def\pgfplotsretval{line},
+ triangulate={%
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{line}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@B}%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ recursive refine@={%
+ \pgfplotspatchclass{\pgfplotspatchclassname}{new}%
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@C\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qspline@AC
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@AC}%
+ #1%
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qspline@C\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qspline@CB
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qspline@CB}%
+ #1%
+ %
+ },%
+ get pdf shading type=0,
+ get num vertices=\def\pgfplotsretval{3},
+}%
+
+\pgfplotsdeclarepatchclass{cubic spline}{%
+ get dimension=\def\pgfplotsretval{1},
+ supports global path=\def\pgfplotsretval{1},
+ new=\def\pgfplotspatchclass@cspline@no{A},
+ set next vertex={%
+ % EXPECTED ORDERING: first 2 corners, then 1 mid nodes
+ % (interpolatory).
+ % defines \pgfplotspatchclass@cspline@A ... \pgfplotspatchclass@cspline@D (4 points)
+ \expandafter\edef\csname pgfplotspatchclass@cspline@\pgfplotspatchclass@cspline@no\endcsname{#1}%
+ \if D\pgfplotspatchclass@cspline@no
+ \def\pgfplotspatchclass@cspline@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@cspline@no\csname pgfpptchindexnext@\pgfplotspatchclass@cspline@no\endcsname
+ \fi
+ },
+ if current point can be first last={%
+ \pgfplots@loc@tmpfalse
+ \if B\pgfplotspatchclass@cspline@no
+ % Ah - the current point is the 'A' point (we have
+ % advanced the '@no' counter)
+ \pgfplots@loc@tmptrue
+ \fi
+ \if C\pgfplotspatchclass@cspline@no
+ % Ah - the current point is the 'B' point (we have
+ % advanced the '@no' counter)
+ \pgfplots@loc@tmptrue
+ \fi
+ \ifpgfplots@loc@tmp
+ #1\relax%
+ \else
+ #2\relax
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.3333333}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.6666666}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@cspline@D\endvertex #1%
+ },
+ fill path={%
+ % Draw the patch boundary using a bezier curve.
+ \pgfplotsplothandlermesh@pathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@cspline@A\endvertex}%
+ \pgfplotspathcubicfrominterpolation
+ {\pgfplotspatchclass@cspline@A}%
+ {\pgfplotspatchclass@cspline@C}%
+ {\pgfplotspatchclass@cspline@D}%
+ {\pgfplotspatchclass@cspline@B}%
+ \pgfplotsplothandlermesh@setlastpoint{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@cspline@B\endvertex}%
+ },
+ triangulate class=\def\pgfplotsretval{line},
+ triangulate={%
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{line}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@B}%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ recursive refine@={%
+ % The 4-point lagrangian interpolation formular is shown on
+ % the top of this page. What I do here is simply to evaluate
+ % C(i*1/9) for i =0,...,9:
+ % 0
+ % 0.493827 A +0.740741 C -0.296296 D +0.0617284 B
+ % 0.17284 A +1.03704 C -0.259259 D +0.0493827 B
+ % 1/3
+ % -0.0617284 A +0.740741 C +0.37037 D -0.0493827 B
+ % -0.0493827 A +0.37037 C +0.740741 D -0.0617284 B
+ % 2/3
+ % 0.0493827 A -0.259259 C +1.03704 D +0.17284 B
+ % 0.0617284 A -0.296296 C +0.740741 D +0.493827 B
+ % 1
+ \pgfplotspatchclass{\pgfplotspatchclassname}{new}%
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.0617284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.740741}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{-0.296296}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.17284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.0493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{1.03704}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{-0.259259}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}%
+ #1%
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{-0.0617284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{-0.0493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.740741}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.37037}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{-0.0493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{-0.0617284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{0.37037}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.740741}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}%
+ #1%
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.0493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.17284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{-0.259259}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{+1.03704}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AA
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@A\times{0.0617284}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@B\times{0.493827}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@C\times{-0.296296}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@cspline@D\times{0.740741}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@cspline@AB
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AA}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@cspline@AB}%
+ #1%
+ },
+ get pdf shading type=0,
+ get num vertices=\def\pgfplotsretval{4},
+}%
+
+\def\pgfplotspathcubicfrominterpolation#1#2#3#4{%
+ % switch basis from lagrange to bezier (see formular on top of
+ % this file)
+ \pgfpathcurveto {%
+ \begingroup
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY#1\times{-0.833333}%
+ \expandafter\pgfplotspatchvertexaddXY#2\times{3}%
+ \expandafter\pgfplotspatchvertexaddXY#3\times{-1.5}%
+ \expandafter\pgfplotspatchvertexaddXY#4\times{0.3333333}%
+ \pgfplotspatchvertexfinish\pgfplots@loc@TMPa
+ \expandafter\pgfplotspointpatchvertex\pgfplots@loc@TMPa\endvertex
+ \endgroup
+ }{%
+ \begingroup
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY#1\times{0.333333}%
+ \expandafter\pgfplotspatchvertexaddXY#2\times{-1.5}%
+ \expandafter\pgfplotspatchvertexaddXY#3\times{3}%
+ \expandafter\pgfplotspatchvertexaddXY#4\times{-0.833333}%
+ \pgfplotspatchvertexfinish\pgfplots@loc@TMPa
+ \expandafter\pgfplotspointpatchvertex\pgfplots@loc@TMPa\endvertex
+ \endgroup
+ }{%
+ \expandafter\pgfplotspointpatchvertex#4\endvertex
+ }%
+}%
+
+% make a linearized sequence around the edge of the quad.triangle.
+% note the ordering: first 3 corners, then 3 mid nodes:
+\def\pgfplots@qtri@next@A{D}%
+\def\pgfplots@qtri@next@B{E}%
+\def\pgfplots@qtri@next@C{F}%
+\def\pgfplots@qtri@next@D{B}%
+\def\pgfplots@qtri@next@E{C}%
+\def\pgfplots@qtri@next@F{A}%
+
+\def\pgfplots@qtri@rnext@A{F}%
+\def\pgfplots@qtri@rnext@B{D}%
+\def\pgfplots@qtri@rnext@C{E}%
+\def\pgfplots@qtri@rnext@D{A}%
+\def\pgfplots@qtri@rnext@E{B}%
+\def\pgfplots@qtri@rnext@F{C}%
+
+\def\pgfplotspatchclass@qtri@recursiverefine@newnames{%
+ \let\pgfplotspatchclass@qtri@A@=\pgfplotspatchclass@qtri@A%
+ \let\pgfplotspatchclass@qtri@B@=\pgfplotspatchclass@qtri@B%
+ \let\pgfplotspatchclass@qtri@C@=\pgfplotspatchclass@qtri@C%
+ \let\pgfplotspatchclass@qtri@D@=\pgfplotspatchclass@qtri@D%
+ \let\pgfplotspatchclass@qtri@E@=\pgfplotspatchclass@qtri@E%
+ \let\pgfplotspatchclass@qtri@F@=\pgfplotspatchclass@qtri@F%
+}%
+
+
+% A 3-point interpolatory patch which draws quadratic polynomial
+% splines (functions f(x), x 1d).
+\pgfplotsdeclarepatchclass{triangle quadr}{%
+ uses view depth=\def\pgfplotsretval{1},% used by the shader: we reorder corners.
+ new=\def\pgfplotspatchclass@qtri@no{A}\let\pgfplotspatchclass@qtrie@AB\relax,
+ set next vertex={%
+ % EXPECTED ORDERING: first 3 corners, then 3 mid nodes.
+ % defines \pgfplotspatchclass@qtri@A ... \pgfplotspatchclass@qtri@F (6 points)
+ \expandafter\edef\csname pgfplotspatchclass@qtri@\pgfplotspatchclass@qtri@no\endcsname{#1}%
+ \if F\pgfplotspatchclass@qtri@no
+ \def\pgfplotspatchclass@qtri@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@qtri@no\csname pgfpptchindexnext@\pgfplotspatchclass@qtri@no\endcsname
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ %
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \pgfplotspatchready
+ %
+ %
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ %
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@E\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@F\endvertex #1%
+ },
+ foreach cdata vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex #1%
+ },
+ fill path={%
+ \begingroup
+ % Draw the patch boundary using three bezier curves.
+ %
+ % Since I have lagrange points to describe the patch (i.e.
+ % points the patch passes through), I have to convert the
+ % lagrange representation to bezier.
+ %
+ % Furthermore, I convert to *cubic* bezier since pdf only
+ % supports cubic curves.
+ %
+ % See the docs for 'biquadratic::fill path' for more details,
+ % in does the same.
+ \def\pgfplots@edge{%
+ \ifx\pgfplotspatchclass@qtri@A\PA
+ \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}%
+ \fi
+ \pgfpathcurveto {%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ }{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ }{%
+ \expandafter\pgfplotspointpatchvertex\PC\endvertex
+ }%
+ }%
+ \let\PA=\pgfplotspatchclass@qtri@A
+ \let\PB=\pgfplotspatchclass@qtri@D
+ \let\PC=\pgfplotspatchclass@qtri@B
+ \pgfplots@edge
+ %
+ \let\PA=\pgfplotspatchclass@qtri@B
+ \let\PB=\pgfplotspatchclass@qtri@E
+ \let\PC=\pgfplotspatchclass@qtri@C
+ \pgfplots@edge
+ %
+ \let\PA=\pgfplotspatchclass@qtri@C
+ \let\PB=\pgfplotspatchclass@qtri@F
+ \let\PC=\pgfplotspatchclass@qtri@A
+ \pgfplots@edge
+ \endgroup
+ \pgfpathclose
+ },
+ %--------------------------------------------------
+ % stroke path={%
+ % \ifx\pgfplotspatchclass@qtrie@AB\relax
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}%
+ % \pgfpathclose
+ % \else
+ % \if1\pgfplotspatchclass@qtrie@AB
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}%
+ % \fi
+ % \if1\pgfplotspatchclass@qtrie@BC
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@B\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}%
+ % \fi
+ % \if1\pgfplotspatchclass@qtrie@CA
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@C\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@qtri@A\endvertex}%
+ % \fi
+ % \fi
+ % },
+ %--------------------------------------------------
+ stream to shader={%
+ % create a degenerate coons patch:
+ \begingroup
+%\message{EDGE INIT^^J}%
+ % this defines \Pcur and \Pnextseq :
+ \pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth
+ %
+ \pgfutil@namelet{Pstart}{pgfplotspatchclass@qtri@\Pcur}%
+ %
+ % see the docus for "fill path" about these 1.33333 and -0.33333 factors
+ \def\pgfplots@coonsedge{%
+%\message{EDGE \Pcur^^J}%
+ \expandafter\let\expandafter\PA\csname pgfplotspatchclass@qtri@\Pcur\endcsname
+ \edef\Pcur{\csname pgfplots@qtri@\Pnextseq next@\Pcur\endcsname}%
+%\message{---> \Pcur^^J}%
+ \expandafter\let\expandafter\PB\csname pgfplotspatchclass@qtri@\Pcur\endcsname
+ \edef\Pcur{\csname pgfplots@qtri@\Pnextseq next@\Pcur\endcsname}%
+%\message{---> \Pcur^^J}%
+ \expandafter\let\expandafter\PC\csname pgfplotspatchclass@qtri@\Pcur\endcsname
+ \ifx\PA\Pstart
+ \expandafter\pgfplotspatchvertex\PA\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ % degenerate: the "edge" \PA -- \PA collabses into one
+ % point.
+ % Per construction, the "edge" is the FOREGROUND.
+%\message{STREAMING COLLAPSED EDGE AT START POINT^^J}%
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ }{}%
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ }{}%
+ \ifx\PC\Pstart
+ \else
+ \expandafter\pgfplotspatchvertex\PC\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+ }%
+ \pgfplots@coonsedge
+ %
+ \pgfplots@coonsedge
+ %
+ \pgfplots@coonsedge
+ %
+ %
+ \endgroup
+ },%
+ triangulate={%
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{triangle}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}11%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20%
+ % Ok. Now create 4 triangles. The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}%
+ %
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}00%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}%
+ %
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}11%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F}%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ set edge visible={%
+ \ifcase#1
+ \edef\pgfplotspatchclass@qtrie@AB{#2}%
+ \or
+ \edef\pgfplotspatchclass@qtrie@BC{#2}%
+ \or
+ \edef\pgfplotspatchclass@qtrie@CA{#2}%
+ \fi
+ },
+ serialize except vertices={%
+ \ifx\pgfplotspatchclass@qtrie@AB\relax
+ \let\pgfplotsretval\pgfutil@empty%
+ \else
+ \edef\pgfplotsretval{%
+ \noexpand\def\noexpand\pgfplotspatchclass@qtrie@AB{\pgfplotspatchclass@qtrie@AB}%
+ \noexpand\def\noexpand\pgfplotspatchclass@qtrie@BC{\pgfplotspatchclass@qtrie@BC}%
+ \noexpand\def\noexpand\pgfplotspatchclass@qtrie@CA{\pgfplotspatchclass@qtrie@CA}%
+ }%
+ \fi
+ },%
+ deserialize except vertices=%
+ \let\pgfplotspatchclass@qtrie@AB\relax
+ #1,
+ recursive refine@={%
+ \pgfplotspatchclass@qtri@recursiverefine@newnames
+ %
+ \pgfplotspatchclass{\pgfplotspatchclassname}{new}%
+ %--------------------------------------------------
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
+ %--------------------------------------------------
+ % The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ %
+ % I used the reference triangle and shape functions as listed in
+ % http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@AD
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DF
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@AF
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@A@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@AF}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@AD}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DF}%
+ %
+ #1\pgfplotspatchclass@qtri@recursiverefine@newnames
+ %
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DF
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.25}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DE
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EF
+ %
+ %
+ %--------------------------------------------------
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}00%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}10%
+ %--------------------------------------------------
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DF}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DE}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EF}%
+ % %
+ % %--------------------------------------------------
+ % % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
+ % % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
+ % %--------------------------------------------------
+ #1\pgfplotspatchclass@qtri@recursiverefine@newnames
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DB
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.25}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@DE
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@BE
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@D@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@B@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DB}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@BE}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@DE}%
+ %
+ #1\pgfplotspatchclass@qtri@recursiverefine@newnames
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EC
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@B\times{-.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@D\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@E\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@EF
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@C\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@qtri@F\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@qtri@CF
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@E@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@C@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@F@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EC}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@CF}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@qtri@EF}%
+ %
+ #1%
+ %
+ },%
+ get pdf shading type=6,
+ get num vertices=\def\pgfplotsretval{6},
+ get num cdata vertices=\def\pgfplotsretval{3},
+}%
+
+
+% see
+% \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+% and its documentation.
+%
+% POSTCONDITION:
+% \Pcur and \Pnextseq are defined.
+\def\pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth{%
+ \def\Pcur{A}%
+ \def\Pnextseq{}%
+ %
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@A\endvertex
+ \ifx\pgfplotspatchvertexdepth\pgfutil@empty
+ \else
+ % ah. We have view depth. Use it!
+ % The idea here is as follows.
+ % According to pdf standard, the COONS Shading is
+ % generated in the unit cube and then mapped to the
+ % shading. If u,v in [0,1] are the coordinates in the unit
+ % cube, pixel values for v=1 overwrite values for v=0.
+ % If pixel values have the same v, u=1 overwrites u=0.
+ % In other words, the loop is
+ % for v= 0 to Nv
+ % for u = 0 to Nu
+ % shade pixel for (u,v)
+ %
+ % BB-------CC <--v=1
+ % | |
+ % | |
+ % | |
+ % AA-------DD <--v=0
+ % | |
+ % u=0 u=1
+ %
+ %
+ % IDEA: re-order the sequence of vertices such that z
+ % buffering is obtained.
+ %
+ % APPROACH:
+ % the edge BB--CC collapses into just one point, namely
+ % the FOREGROUND point (i.e. it is drawn on top of
+ % everything else).
+ %
+ % The AA point is the second nearest foreground point.
+ % The sequence is chosen such that AA,BB is the first
+ % edge.
+ %
+ % What is to do (besides determining the vertices for AA
+ % and BB)? Well, make sure, that we can arrange them in
+ % the desired order. This involves a periodic "next vertex"
+ % algorithm which might either go forward
+ % or backward.
+ %
+ % sort according to depth.
+ % To do so, prepare macros \PA,\PB,\PC for use in
+ % \pgfplotsutilsortthree. FORMAT:
+ % \PA={<sortkey>pt <originalindex>}
+ \edef\PA{\pgfplotspatchvertexdepth pt A}%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@B\endvertex
+ \edef\PB{\pgfplotspatchvertexdepth pt B}%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@qtri@C\endvertex
+ \edef\PC{\pgfplotspatchvertexdepth pt C}%
+ \pgfplotsutilsortthree\PA\PB\PC
+ \def\toCHAR##1pt ##2{##2}% get original index
+ %
+ \edef\Pcur{\expandafter\toCHAR\PB}%%
+ \edef\Pnext{\csname pgfplots@qtri@next@\Pcur\endcsname}%
+ \edef\Pnext{\csname pgfplots@qtri@next@\Pnext\endcsname}%
+ \if\Pnext\PA
+ % ok, next(next(AA)) = BB.
+ % that means we have to advance forward.
+ \def\Pnextseq{}%
+ \else
+ % well, since we have a triangle, there only remains
+ % the backwards direction.
+ \def\Pnextseq{r}%
+ \fi
+%\message{FOREGROUND VERTEX = \PA.^^J}%
+%\message{SECOND NEAREST VERTEX = \PB.^^J}%
+ \fi
+}
+\def\pgfplotspatchclass@tri@to@coonspatch@findshadingsequence@for@depth@no@op{%
+ \def\Pcur{A}%
+ \def\Pnextseq{}%
+}
+
+% bilinear is the same as 'rectangle', but it uses a different shader.
+\pgfplotsdeclarepatchclass{bilinear}{%
+ allow matrix=\def\pgfplotsretval{1},
+ new=\def\pgfplotspatchclass@rect@no{0},
+ set next vertex={%
+ \ifcase\pgfplotspatchclass@rect@no\relax
+ \edef\pgfplotspatchclass@rect@A{#1}%
+ \def\pgfplotspatchclass@rect@no{1}%
+ \or
+ \edef\pgfplotspatchclass@rect@B{#1}%
+ \def\pgfplotspatchclass@rect@no{2}%
+ \or
+ \edef\pgfplotspatchclass@rect@C{#1}%
+ \def\pgfplotspatchclass@rect@no{3}%
+ \or
+ \edef\pgfplotspatchclass@rect@D{#1}%
+ \def\pgfplotspatchclass@rect@no{0}%
+ \pgfplotspatchready%
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@rect@D\endvertex #1%
+ },
+ stream to shader={%
+ % create a coons patch:
+ \begingroup
+ \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+ {pgfplotspatchclass@rect@}{\Pcur}{\Pnextseq}%
+ %
+ \pgfutil@namelet{Pstart}{pgfplotspatchclass@rect@\Pcur}%
+ \def\pgfplots@coonsedge{%
+%\message{EDGE \Pcur^^J}%
+ \expandafter\let\expandafter\PA\csname pgfplotspatchclass@rect@\Pcur\endcsname
+ \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}%
+%\message{---> \Pcur^^J}%
+ \expandafter\let\expandafter\PB\csname pgfplotspatchclass@rect@\Pcur\endcsname
+ \ifx\PA\Pstart
+ \expandafter\pgfplotspatchvertex\PA\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+ %
+ % CONTROL POINT A+1/3(B-A)
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{0.6666666}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ {\pgfqpointscale{0.3333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ }{}%
+ % CONTROL POINT A+2/3(B-A)
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{0.3333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ {\pgfqpointscale{0.6666666}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ }{}%
+ \ifx\PB\Pstart
+ \else
+ \expandafter\pgfplotspatchvertex\PB\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+ }%
+ %
+ \pgfplots@coonsedge
+ %
+ \pgfplots@coonsedge
+ %
+ \pgfplots@coonsedge
+ %
+ \pgfplots@coonsedge
+ %
+ \endgroup
+ },%
+ fill path={%
+ \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@A\endvertex}%
+ \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@B\endvertex}%
+ \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@C\endvertex}%
+ \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@rect@D\endvertex}%
+ \pgfpathclose
+ },
+ triangulate={%
+ \pgfplotscoordmath{meta}{parsenumber}{0.25}%
+ \let\pgfplots@loc@scale=\pgfmathresult
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\endvertex\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\endvertex\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\endvertex\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\endvertex\times{0.25}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@M
+ %
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{triangle}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20%
+ % Ok. Now create 4 triangles. The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@M}%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ recursive refine@={%
+ \pgfplotspatchclass@rect@refine@{#1}%
+ },%
+ serialize except vertices=\let\pgfplotsretval\pgfutil@empty,%
+ deserialize except vertices=,
+ get pdf shading type=6,
+ get num vertices=\def\pgfplotsretval{4},
+}%
+
+\pgfplotsdeclarepatchclass{rectangle}{%
+ recursive refine@={%
+ \pgfplotspatchclass@rect@refine@{#1}%
+ },%
+}
+\def\pgfplotspatchclass@rect@refine@#1{%
+ \pgfplotspatchclass@rect@recursiverefine@newnames
+ %
+ \pgfplotspatchclass{\pgfplotspatchclassname}{new}%
+ %--------------------------------------------------
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
+ %--------------------------------------------------
+ % The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.25}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.25}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@M
+ %
+ \expandafter\pgfplotspatchclass@rect@refine@@\expandafter{\pgfplotspatchclass@rect@M}{#1}%
+}
+\def\pgfplotspatchclass@rect@refine@@#1#2{%
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@AB
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@DA
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@A@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@AB}%
+ \pgfplotsplothandlermesh@setnextvertex{#1}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@DA}%
+ #2\pgfplotspatchclass@rect@recursiverefine@newnames
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@AB
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@BC
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@AB}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@B@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@BC}%
+ \pgfplotsplothandlermesh@setnextvertex{#1}%
+ #2\pgfplotspatchclass@rect@recursiverefine@newnames
+ %
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@CD
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@B\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@BC
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@BC}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@C@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@CD}%
+ \pgfplotsplothandlermesh@setnextvertex{#1}%
+ #2\pgfplotspatchclass@rect@recursiverefine@newnames
+ %
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@C\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@CD
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@D\times{0.5}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@rect@A\times{0.5}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@rect@DA
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@CD}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@D@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@rect@DA}%
+ \pgfplotsplothandlermesh@setnextvertex{#1}%
+ #2\pgfplotspatchclass@rect@recursiverefine@newnames
+ %
+}%
+
+\def\pgfplotspatchclass@rect@recursiverefine@newnames{%
+ \let\pgfplotspatchclass@rect@A@=\pgfplotspatchclass@rect@A%
+ \let\pgfplotspatchclass@rect@B@=\pgfplotspatchclass@rect@B%
+ \let\pgfplotspatchclass@rect@C@=\pgfplotspatchclass@rect@C%
+ \let\pgfplotspatchclass@rect@D@=\pgfplotspatchclass@rect@D%
+}%
+
+
+% An arbitrary poligy specified in the sequence
+% D <-- C
+% | ^
+% v |
+% A --> B
+%
+\pgfkeyssetvalue{/pgfplots/vertex count}{0}%
+\pgfplotsdeclarepatchclass{polygon}{%
+ new=\def\pgfplotspatchclass@poly@no{0},
+ set next vertex={%
+ \pgfplotspatchclass@poly@checkcount
+ \expandafter\edef\csname pgfplotspatchclass@poly@\pgfplotspatchclass@poly@no\endcsname{#1}%
+ \pgfplotsutil@advancestringcounter\pgfplotspatchclass@poly@no
+ \ifnum\pgfplotspatchclass@poly@no=\pgfkeysvalueof{/pgfplots/vertex count} %
+ \def\pgfplotspatchclass@poly@no{0}%
+ \pgfplotspatchready%
+ \fi
+ },
+ first vertex=\expandafter\expandafter\expandafter\pgfplotspatchvertex\csname pgfplotspatchclass@poly@0\endcsname\endvertex,
+ foreach vertex={%
+ \pgfplotspatchclass@poly@foreach@loop{0}{#1}%
+ },
+ init pdf shading={%
+ \pgfplots@error{Sorry, patch type=polygon does not support shadings}%
+ },
+ serialize except vertices=\let\pgfplotsretval\pgfutil@empty,%
+ deserialize except vertices=,
+ get pdf shading type=4,
+ get num vertices=\def\pgfplotsretval{\pgfkeysvalueof{/pgfplots/vertex count}},
+}%
+\def\pgfplotspatchclass@poly@checkcount{%
+ \ifnum\pgfkeysvalueof{/pgfplots/vertex count}>0
+ \else
+ \pgfplots@error{Sorry, 'patch type=polygon' *requires* that 'vertex count=<num>' is set (note: it is allowed if multiple vertices have the same coordinates).}%
+ \fi
+}%
+\long\def\pgfplotspatchclass@poly@foreach@loop#1#2{%
+ \ifnum#1<\pgfkeysvalueof{/pgfplots/vertex count} %
+ \expandafter\expandafter\expandafter\pgfplotspatchvertex\csname pgfplotspatchclass@poly@#1\endcsname\endvertex #2%
+ \begingroup
+ \c@pgf@counta=#1 %
+ \advance\c@pgf@counta by1 %
+ \t@pgfplots@toka={#2}%
+ \xdef\pgfplots@glob@TMPc{\noexpand\pgfplotspatchclass@poly@foreach@loop{\the\c@pgf@counta}{\the\t@pgfplots@toka}}%
+ \endgroup
+ \else
+ \gdef\pgfplots@glob@TMPc{}%
+ \fi
+ \pgfplots@glob@TMPc
+}%
+
+\def\pgfplots@biquad@next@A{E}
+\def\pgfplots@biquad@next@B{F}
+\def\pgfplots@biquad@next@C{G}
+\def\pgfplots@biquad@next@D{H}
+\def\pgfplots@biquad@next@E{B}
+\def\pgfplots@biquad@next@F{C}
+\def\pgfplots@biquad@next@G{D}
+\def\pgfplots@biquad@next@H{A}
+
+
+\def\pgfplots@biquad@rnext@A{H}
+\def\pgfplots@biquad@rnext@B{E}
+\def\pgfplots@biquad@rnext@C{F}
+\def\pgfplots@biquad@rnext@D{G}
+\def\pgfplots@biquad@rnext@E{A}
+\def\pgfplots@biquad@rnext@F{B}
+\def\pgfplots@biquad@rnext@G{C}
+\def\pgfplots@biquad@rnext@H{D}
+
+\def\pgfplotspatchclass@biquad@recursiverefine@newnames{%
+ \let\pgfplotspatchclass@biquad@A@=\pgfplotspatchclass@biquad@A%
+ \let\pgfplotspatchclass@biquad@B@=\pgfplotspatchclass@biquad@B%
+ \let\pgfplotspatchclass@biquad@C@=\pgfplotspatchclass@biquad@C%
+ \let\pgfplotspatchclass@biquad@D@=\pgfplotspatchclass@biquad@D%
+ \let\pgfplotspatchclass@biquad@E@=\pgfplotspatchclass@biquad@E%
+ \let\pgfplotspatchclass@biquad@F@=\pgfplotspatchclass@biquad@F%
+ \let\pgfplotspatchclass@biquad@G@=\pgfplotspatchclass@biquad@G%
+ \let\pgfplotspatchclass@biquad@H@=\pgfplotspatchclass@biquad@H%
+ \let\pgfplotspatchclass@biquad@I@=\pgfplotspatchclass@biquad@I%
+}%
+
+
+% mathematica shape functions parameterized in
+% (xi,eta) in [-1,1]x[-1,1]:
+%f[xi_, eta_] =
+% a*1/4*(1 - xi) (1 - eta) xi*eta +
+% b 1/4 (-1 - xi) (1 - eta) xi*eta +
+% c* 1/4 (-1 - xi) (-1 - eta) xi*eta +
+% d *1/4 (1 - xi) (-1 - eta) xi*eta +
+% e * 1/2 (xi^2 - 1) (1 - eta) eta +
+% f*1/2 (-1 - xi) (eta^2 - 1) xi +
+% g* -1/2 (1 - xi^2) (-1 - eta) eta +
+% h* -1/2 (1 - xi) (1 - eta^2) xi +
+% i*(1 - xi^2) (1 - eta^2)
+% here, a,b,...,i are the 9 nodes.
+\pgfplotsdeclarepatchclass{biquadratic}{%
+ new=\def\pgfplotspatchclass@biquad@no{A}\let\pgfplotspatchclass@biquade@AB\relax,
+ set next vertex={%
+ % defines \pgfplotspatchclass@biquad@A ... \pgfplotspatchclass@biquad@I (9 points)
+ \expandafter\edef\csname pgfplotspatchclass@biquad@\pgfplotspatchclass@biquad@no\endcsname{#1}%
+ \if I\pgfplotspatchclass@biquad@no
+ \def\pgfplotspatchclass@biquad@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@biquad@no\csname pgfpptchindexnext@\pgfplotspatchclass@biquad@no\endcsname
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \def\pgfplotspatchclassx{0.5}%
+ \def\pgfplotspatchclassy{0.5}%
+ #1%
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@E\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@F\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@G\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@H\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@I\endvertex #1%
+ },
+ foreach cdata vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@biquad@D\endvertex #1%
+ },
+ fill path={%
+ \begingroup
+ % Visualize the patch boundary using four bezier curves.
+ %
+ % This involves a change from Lagrange to bezier
+ % representation of the boundary curves.
+ %
+ % Furthermore, pdf supports only **cubic** bezier curves. What
+ % I am doing here is
+ % a) change of basis from 3-point lagrange ---> 3 point quadratic bezier
+ % b) expression 3 point quadratic bezier ----> 4 point cubic bezier
+ %
+ % INPUT:
+ % 3 langrange points (i.e. the patch passes through them)
+ % \PA,\PB,\PC (start,middle,end)
+ %
+ % OUTPUT:
+ % \PA,bezier control 1, bezier control 2, \PC.
+ %
+ \def\pgfplots@edge{%
+ \ifx\pgfplotspatchclass@biquad@A\PA
+ \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}%
+ \fi
+ \pgfpathcurveto {%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ }{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ }{%
+ \expandafter\pgfplotspointpatchvertex\PC\endvertex
+ }%
+ }%
+ \let\PA=\pgfplotspatchclass@biquad@A
+ \let\PB=\pgfplotspatchclass@biquad@E
+ \let\PC=\pgfplotspatchclass@biquad@B
+ \pgfplots@edge
+ %
+ \let\PA=\pgfplotspatchclass@biquad@B
+ \let\PB=\pgfplotspatchclass@biquad@F
+ \let\PC=\pgfplotspatchclass@biquad@C
+ \pgfplots@edge
+ %
+ \let\PA=\pgfplotspatchclass@biquad@C
+ \let\PB=\pgfplotspatchclass@biquad@G
+ \let\PC=\pgfplotspatchclass@biquad@D
+ \pgfplots@edge
+ %
+ \let\PA=\pgfplotspatchclass@biquad@D
+ \let\PB=\pgfplotspatchclass@biquad@H
+ \let\PC=\pgfplotspatchclass@biquad@A
+ \pgfplots@edge
+ \endgroup
+ \pgfpathclose
+ },
+ %--------------------------------------------------
+ % stroke path={%
+ % \ifx\pgfplotspatchclass@biquade@AB\relax
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}%
+ % \pgfpathclose
+ % \else
+ % \if1\pgfplotspatchclass@biquade@AB
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}%
+ % \fi
+ % \if1\pgfplotspatchclass@biquade@BC
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@B\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}%
+ % \fi
+ % \if1\pgfplotspatchclass@biquade@CA
+ % \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@C\endvertex}%
+ % \pgfpathlineto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@biquad@A\endvertex}%
+ % \fi
+ % \fi
+ % },
+ %--------------------------------------------------
+ stream to shader={%
+ \begingroup
+ %
+ % An early version of this shader used Coons patch shadings
+ % (which provides coordinates only for the 9 boundary
+ % vertices, not for the inner vertices). That is a little bit
+ % simpler than what you see in the following lines of code: a
+ % transformation to a tensor bezier shading.
+ %
+ % What we need is to map the 3x3 data from lagrangrian
+ % (interpolation) representation to 4x4 cubic bezier - and
+ % handle the four INNER nodes correctly.
+ %
+ % The algorithm to convert from 1d curves with 3 point langrange to 4 point
+ % bezier is well-known and relatively simple. Fortunately, the
+ % extension to 3x3 -> 4x4 can be boiled down to a successive
+ % application of the 1d algorithm - applied to horizontal and
+ % vertical lines in the data matrizes.
+ %
+ % NOTE: the algorithm in the following lines results in
+ % EXACTLY THE SAME four cubic boundary curves as the approach
+ % in 'fill path'. The only difference is that it also does the
+ % right thing for the inner node.
+ %
+ % STEP 1: ensure that the patch's coordinates are streamed in
+ % a sequence which is compatible with the DEPTH of the
+ % corners.
+ %
+ % we use
+ % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+ % which works for bilinear, biquadratic, and bicubic
+ \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+ {pgfplotspatchclass@biquad@}{\Pcur}{\Pnextseq}%
+ %
+ % STEP 2:
+ % now, translate the result into our matrix form.
+ % This means to (a) identify the FIRST point which needs to be
+ % streamed (it is stored in \Pcur as 'A', 'B', 'C', or 'D')
+ % and (b) keep in mind that we have to take care of the
+ % sequence in which points are streamed ("forward" means to
+ % rotate the matrix elements and "backward" means to transpose
+ % the "forward" result).
+ %
+ % This can be seen as conversion from the "linearized"
+ % numbering to matrix indexing - while respecting the "start
+ % point".
+ %
+ % INPUT:
+ %
+ % D G C
+ % H I F
+ % A E B
+ %
+ \if A\Pcur
+ % Ah - the point "A" needs to be streamed as first.
+ %
+ % Well, this is simple: take the matrix as-is!
+ % simply copy 1:1
+ %
+ % i.e. convert
+ % D G C
+ % H I F
+ % A E B
+ %
+ % to
+ %
+ % AC BC CC
+ % AB BB CB
+ % AA BA CA
+ \let\P@AA=\pgfplotspatchclass@biquad@A
+ \let\P@BA=\pgfplotspatchclass@biquad@E
+ \let\P@CA=\pgfplotspatchclass@biquad@B
+ \let\P@AB=\pgfplotspatchclass@biquad@H
+ \let\P@BB=\pgfplotspatchclass@biquad@I
+ \let\P@CB=\pgfplotspatchclass@biquad@F
+ \let\P@AC=\pgfplotspatchclass@biquad@D
+ \let\P@BC=\pgfplotspatchclass@biquad@G
+ \let\P@CC=\pgfplotspatchclass@biquad@C
+ \fi
+ \if B\Pcur
+ % the "B" point needs to be streamed as first.
+ %
+ % i.e. reorder
+ % D G C
+ % H I F
+ % A E B
+ %
+ % to
+ % A H D AC BC CC
+ % E I G =: AB BB CB
+ % B F C AA BA CA
+ %
+ \let\P@AA=\pgfplotspatchclass@biquad@B
+ \let\P@BA=\pgfplotspatchclass@biquad@F
+ \let\P@CA=\pgfplotspatchclass@biquad@C
+ \let\P@AB=\pgfplotspatchclass@biquad@E
+ \let\P@BB=\pgfplotspatchclass@biquad@I
+ \let\P@CB=\pgfplotspatchclass@biquad@G
+ \let\P@AC=\pgfplotspatchclass@biquad@A
+ \let\P@BC=\pgfplotspatchclass@biquad@H
+ \let\P@CC=\pgfplotspatchclass@biquad@D
+ \fi
+ \if C\Pcur
+ % the "C" point needs to be streamed as first.
+ %
+ % i.e. reorder
+ % D G C
+ % H I F
+ % A E B
+ %
+ % to
+ % B E A AC BC CC
+ % F I H =: AB BB CB
+ % C G D AA BA CA
+ %
+ \let\P@AA=\pgfplotspatchclass@biquad@C
+ \let\P@BA=\pgfplotspatchclass@biquad@G
+ \let\P@CA=\pgfplotspatchclass@biquad@D
+ \let\P@AB=\pgfplotspatchclass@biquad@F
+ \let\P@BB=\pgfplotspatchclass@biquad@I
+ \let\P@CB=\pgfplotspatchclass@biquad@H
+ \let\P@AC=\pgfplotspatchclass@biquad@B
+ \let\P@BC=\pgfplotspatchclass@biquad@E
+ \let\P@CC=\pgfplotspatchclass@biquad@A
+ \fi
+ \if D\Pcur
+ % the "D" point needs to be streamed as first.
+ %
+ % i.e. reorder
+ % D G C
+ % H I F
+ % A E B
+ %
+ % to
+ % C F B AC BC CC
+ % G I E =: AB BB CB
+ % D H A AA BA CA
+ %
+ \let\P@AA=\pgfplotspatchclass@biquad@D
+ \let\P@BA=\pgfplotspatchclass@biquad@H
+ \let\P@CA=\pgfplotspatchclass@biquad@A
+ \let\P@AB=\pgfplotspatchclass@biquad@G
+ \let\P@BB=\pgfplotspatchclass@biquad@I
+ \let\P@CB=\pgfplotspatchclass@biquad@E
+ \let\P@AC=\pgfplotspatchclass@biquad@C
+ \let\P@BC=\pgfplotspatchclass@biquad@F
+ \let\P@CC=\pgfplotspatchclass@biquad@B
+ \fi
+ \ifx\Pnextseq\pgfutil@empty
+ \else
+ % reverse the ordering. This means to transpose the
+ % matrix:
+ \pgfplotspatchclass@biquad@transpose
+ \fi
+ %
+ %
+ % Step: convert to tensor bezier representation.
+ %
+ % Converting a 2d tensor product lagrangian interpoland to a
+ % 2d tensor product bezier interpoland can be achieved by
+ % means of 1d algorithms along LINES in the matrix.
+ %
+ % The underlying proof for this is related to the tensor
+ % product form: the U and V coordinates are orthogonal to each
+ % other, so we can redistribute all intermediate results. (I
+ % do not have the real proof, so this hand-waving argument has
+ % to be enough). I verified its results experimentally.
+ %
+ % Note that the underlying 1d operation is the same as for
+ % 'patch type=quadratic spline' . We only need to apply it to all
+ % lines in U direction and afterwards to all lines in V
+ % direction.
+ %
+ \def\pgfplotspatchvertexaddXY@expanded##1\times{%
+ \edef\pgfplots@loc@TMPa{##1}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times
+ }%
+ %
+ % this macro operates on \pgfplots@line{[ABC]} and defines
+ % \pgfplots@line{[ABCD]} (i.e. one dimension more!)
+ \def\pgfplots@apply@to@line{%
+ \pgfplotspatchvertexaccumstart
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{1.333333}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{-0.333333}%
+ \pgfplotspatchvertexfinish\pgfplots@controlpoint@A
+ %
+ \pgfplotspatchvertexaccumstart
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{-0.333333}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{1.333333}%
+ \pgfplotspatchvertexfinish\pgfplots@controlpoint@B
+ %
+ % ... we output 4 points (cubic!).
+ % A= left endpoint (untouched)
+ % B= first control
+ % C= second control
+ % D= right endpoint (untouched, is formerly called 'C')
+ \edef\pgfplots@loc@TMPa{\pgfplots@line{C}}%
+ \expandafter\expandafter\expandafter\let\pgfplots@line{B}=\pgfplots@controlpoint@A
+ \expandafter\expandafter\expandafter\let\pgfplots@line{C}=\pgfplots@controlpoint@B
+ \expandafter\expandafter\expandafter\let\pgfplots@line{D}=\pgfplots@loc@TMPa
+ }%
+ %
+ \def\pgfplots@line##1{\csname P@##1A\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@##1B\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@##1C\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ % Now, we have a 3x4 matrix.
+ %
+ %
+ \def\pgfplots@line##1{\csname P@A##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@B##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@C##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@D##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ % OK. The tensor product representation is READY.
+ %
+ % in particular, we have a 4x4 matrix right now:
+ %
+ \pgfplotsplothandlermesh@shade@cubic@tensor
+ \endgroup
+ },%
+ triangulate={%
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{triangle}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20%
+ % Ok. Now create 4 triangles. The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I}%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ %--------------------------------------------------
+ % set edge visible={%
+ % \ifcase#1
+ % \edef\pgfplotspatchclass@biquade@AB{#2}%
+ % \or
+ % \edef\pgfplotspatchclass@biquade@BC{#2}%
+ % \or
+ % \edef\pgfplotspatchclass@biquade@CA{#2}%
+ % \fi
+ % },
+ %--------------------------------------------------
+ serialize except vertices={%
+ \ifx\pgfplotspatchclass@biquade@AB\relax
+ \let\pgfplotsretval\pgfutil@empty%
+ \else
+ \edef\pgfplotsretval{%
+ \noexpand\def\noexpand\pgfplotspatchclass@biquade@AB{\pgfplotspatchclass@biquade@AB}%
+ \noexpand\def\noexpand\pgfplotspatchclass@biquade@BC{\pgfplotspatchclass@biquade@BC}%
+ \noexpand\def\noexpand\pgfplotspatchclass@biquade@CA{\pgfplotspatchclass@biquade@CA}%
+ }%
+ \fi
+ },%
+ deserialize except vertices=%
+ \let\pgfplotspatchclass@biquade@AB\relax
+ #1,
+ recursive refine@={%
+ \pgfplotspatchclass@biquad@recursiverefine@newnames
+ %
+ \pgfplotspatchclass{\pgfplotspatchclassname}{new}%
+ %--------------------------------------------------
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}01%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}11%
+ % \pgfplotspatchclass{\pgfplotspatchclassname}{set edge visible}20%
+ %--------------------------------------------------
+ % The ordering is not arbitrary
+ % (unless z buffer=sort is in effect). Let's assume that the
+ % AB edge is BACKGROUND and the CD edge is FOREGROUND. Then
+ % this sequence here should have approximately the same depth
+ % ordering:
+ %
+ % I used the reference triangle and shape functions as listed in
+ % http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/,
+ % see above for the definition of f[xi,eta]
+ %
+ % N[{f[-1/2, -1], f[0, -1/2], f[-1/2, 0], f[-1, -1/2], f[-1/2, -1/2]}]
+ % {0.375` a - 0.125` b + 0.75` e,
+ % 0.375` e - 0.125` g + 0.75` i,
+ % -0.125` f + 0.375` h + 0.75` i,
+ % 0.375` a - 0.125` d + 0.75` h,
+ % 0.140625` a - 0.046875` b + 0.015625` c - 0.046875` d +
+ % 0.28125` e - 0.09375` f - 0.09375` g + 0.28125` h +
+ % 0.5625` i}
+ %--------------------------------------------------
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AE
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AH
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.140625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.015625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@AEIH
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@A@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AE}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AH}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@AEIH}%
+ %
+ #1\pgfplotspatchclass@biquad@recursiverefine@newnames
+ %
+ % N[{f[1/2, -1], f[1, -1/2], f[1/2, 0], f[1/2, -1/2]}]
+ % {-0.125` a + 0.375` b + 0.75` e,
+ % 0.375` b - 0.125` c + 0.75` f,
+ % 0.375` f - 0.125` h + 0.75` i,
+ % -0.046875 a + 0.140625 b - 0.046875 c + 0.015625 d + 0.28125 e + 0.28125 f - 0.09375 g - 0.09375 h + 0.5625 i}
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EB
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@BF
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FI
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.140625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.015625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@EBFI
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@E@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@B@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EB}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@BF}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@EBFI}%
+ %
+ #1\pgfplotspatchclass@biquad@recursiverefine@newnames
+ %
+ %
+ % N[ {f[1, 1/2], f[1/2, 1], f[0, 1/2], f[1/2, 1/2]}]
+ % {-0.125` b + 0.375` c + 0.75` f,
+ % 0.375` c - 0.125` d + 0.75` g,
+ % -0.125` e + 0.375` g + 0.75` i,
+ % 0.015625` a - 0.046875` b + 0.140625` c - 0.046875` d - 0.09375` e + 0.28125` f + 0.28125` g - 0.09375` h + 0.5625` i}
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FC
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@CG
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@FI
+ %
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{0.015625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{0.140625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@IFCG
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@F@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@C@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@FC}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@CG}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@IFCG}%
+ %
+ #1\pgfplotspatchclass@biquad@recursiverefine@newnames
+ %
+ %
+ % N[{f[-1/2, 1], f[-1, 1/2], f[-1/2, 1/2]}]
+ % {-0.125 c + 0.375 d + 0.75 g,
+ % -0.125 a + 0.375 d + 0.75 h,
+ % -0.046875 a + 0.015625 b - 0.046875 c + 0.140625 d - 0.09375 e - 0.09375 f + 0.28125 g + 0.28125 h + 0.5625 i}
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GD
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@DH
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@GI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@A\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@B\times{0.015625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@C\times{-0.046875}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@D\times{0.140625}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@E\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@F\times{-0.09375}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@G\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@H\times{0.28125}%
+ \expandafter\pgfplotspatchvertexadd\pgfplotspatchclass@biquad@I\times{0.5625}%
+ \pgfplotspatchvertexfinish\pgfplotspatchclass@biquad@HIGD
+ %
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@H@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@I@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@G@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@D@}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GI}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@GD}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@DH}%
+ \expandafter\pgfplotsplothandlermesh@setnextvertex\expandafter{\pgfplotspatchclass@biquad@HIGD}%
+ %
+ #1%
+ %
+ },%
+ get pdf shading type*={%
+ \if1\b@pgfplotsplothandlermesh@enable@fixed@biquadratic
+ \def\pgfplotsretval{7}%
+ \else
+ \def\pgfplotsretval{6}%
+ \fi
+ },%
+ get num vertices=\def\pgfplotsretval{9},
+ get num cdata vertices=\def\pgfplotsretval{4},
+}%
+
+% set this to 0 to revert to an older implementation (which was buggy,
+% though)
+\def\b@pgfplotsplothandlermesh@enable@fixed@biquadratic{1}%
+
+
+% see docs in 'biquadratic::stream to shader' for details.
+% PRECONDITION: to be used inside of 'stream to shader'.
+\def\pgfplotspatchclass@biquad@coonsedge{%
+%\message{EDGE \Pcur^^J}%
+ \expandafter\let\expandafter\PA\csname pgfplotspatchclass@biquad@\Pcur\endcsname
+ \edef\Pcur{\csname pgfplots@biquad@\Pnextseq next@\Pcur\endcsname}%
+ \expandafter\let\expandafter\PB\csname pgfplotspatchclass@biquad@\Pcur\endcsname
+%\message{---> \Pcur^^J}%
+ \edef\Pcur{\csname pgfplots@biquad@\Pnextseq next@\Pcur\endcsname}%
+ \expandafter\let\expandafter\PC\csname pgfplotspatchclass@biquad@\Pcur\endcsname
+%\message{---> \Pcur^^J}%
+ \ifx\PA\Pstart
+ \expandafter\pgfplotspatchvertex\PA\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ }{}%
+ \pgfplotslibrarysurfstreamcoord{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ }{}%
+ \ifx\PC\Pstart
+ \else
+ \expandafter\pgfplotspatchvertex\PC\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \fi
+}%
+\def\pgfplotspatchclass@biquad@innercontrolpoints{%
+ \begingroup
+ %
+ % This here computes the FOUR INNER CONTROL POINTS of a tensor
+ % cubic bezier patch (Shading Type 7).
+ %
+ %
+ % the following point coordinates have been acquired from
+ % biquadratic::recursive refine. See above for documentation.
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@A\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@B\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@E\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@AE
+ %
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@F\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@H\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@HI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@A\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@B\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@E\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@EB
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@F\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@H\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@I\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@FI
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@C\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@D\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@G\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@CG
+ %
+ \pgfplotspatchvertexaccumstart
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@C\times{-0.125}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@D\times{0.375}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplotspatchclass@biquad@G\times{0.75}%
+ \pgfplotspatchvertexfinishXY\pgfplotspatchclass@biquad@GD
+ %
+ %
+ \let\PA=\pgfplotspatchclass@biquad@AE
+ \let\PB=\pgfplotspatchclass@biquad@HI
+ \let\PC=\pgfplotspatchclass@biquad@GD
+ \pgfplotspatchclass@biquad@innercontrolpoints@PREPARE\pgfplotspatchclass@biquad@@A\pgfplotspatchclass@biquad@@D
+ %
+ \let\PA=\pgfplotspatchclass@biquad@EB
+ \let\PB=\pgfplotspatchclass@biquad@FI
+ \let\PC=\pgfplotspatchclass@biquad@CG
+ \pgfplotspatchclass@biquad@innercontrolpoints@PREPARE\pgfplotspatchclass@biquad@@B\pgfplotspatchclass@biquad@@C
+ %
+ %
+ \let\Pcur=\Pstartidx
+ \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}%
+ %
+ \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}%
+ \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}%
+ %
+ \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}%
+ \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}%
+ %
+ \edef\Pcur{\csname pgfplots@rect@\Pnextseq next@\Pcur\endcsname}%
+ \pgfplotslibrarysurfstreamcoord{\csname pgfplotspatchclass@biquad@@\Pcur\endcsname}{}%
+ \endgroup
+}%
+\def\pgfplotspatchclass@biquad@innercontrolpoints@PREPARE#1#2{%
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}}%
+ \edef#1{\global\pgf@x=\the\pgf@x\space\global\pgf@y=\the\pgf@y\space}%
+ %
+ \pgfpointadd
+ {\pgfqpointscale{1.333333}{\expandafter\pgfplotspointpatchvertex\PB\endvertex}}%
+ {\pgfqpointscale{-0.333333}{\expandafter\pgfplotspointpatchvertex\PA\endvertex}}%
+ \edef#2{\global\pgf@x=\the\pgf@x\space\global\pgf@y=\the\pgf@y\space}%
+ %
+\pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PA\endvertex}{1pt}\pgfusepath{fill}%
+\pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PB\endvertex}{1pt}\pgfusepath{fill}%
+\pgfpathcircle{\expandafter\pgfplotspointpatchvertex\PC\endvertex}{1pt}\pgfusepath{fill}%
+\pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\PA\endvertex}%
+\pgfpathcurveto{#1}{#2}{\expandafter\pgfplotspointpatchvertex\PC\endvertex}%
+\pgfusepath{stroke}%
+}
+
+% Direct interface to coons patches (pdf shading type 6).
+% See manual and/or pdf reference
+\pgfplotsdeclarepatchclass{coons}{%
+ new=\def\pgfplotspatchclass@coons@no{A},
+ set next vertex={%
+ % defines \pgfplotspatchclass@coons@A ... \pgfplotspatchclass@coons@L (12 points)
+ \expandafter\edef\csname pgfplotspatchclass@coons@\pgfplotspatchclass@coons@no\endcsname{#1}%
+ \if L\pgfplotspatchclass@coons@no
+ \def\pgfplotspatchclass@coons@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@coons@no\csname pgfpptchindexnext@\pgfplotspatchclass@coons@no\endcsname
+ \fi
+ },
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@E\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@F\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@G\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@H\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@I\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@J\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@K\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@L\endvertex #1%
+ },
+ foreach cdata vertex={%
+ % 0, 3, 6, 9
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@G\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@coons@J\endvertex #1%
+ },
+ fill path={%
+ \pgfpathmoveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@A\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@B\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@C\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@D\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@E\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@F\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@G\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@H\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@I\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@J\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@K\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@L\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@coons@A\endvertex}%
+ \pgfpathclose
+ },
+ serialize except vertices=\let\pgfplotsretval\pgfutil@empty,%
+ deserialize except vertices=,
+ get pdf shading type=6,
+ get num vertices=\def\pgfplotsretval{12},
+ get num cdata vertices=\def\pgfplotsretval{4},
+}%
+
+% Direct interface to tensor product bezier patches (pdf shading type 7).
+% See manual and/or pdf reference
+\pgfplotsdeclarepatchclass{tensor bezier}{%
+ new=\def\pgfplotspatchclass@tensor@no{A},
+ set next vertex={%
+ % defines \pgfplotspatchclass@tensor@A ... \pgfplotspatchclass@tensor@P (16 points)
+ \expandafter\edef\csname pgfplotspatchclass@tensor@\pgfplotspatchclass@tensor@no\endcsname{#1}%
+ \if P\pgfplotspatchclass@tensor@no
+ \def\pgfplotspatchclass@tensor@no{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@tensor@no\csname pgfpptchindexnext@\pgfplotspatchclass@tensor@no\endcsname
+ \fi
+ },
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@B\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@C\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@E\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@F\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@G\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@H\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@I\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@J\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@K\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@L\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@M\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@N\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@O\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@P\endvertex #1%
+ },
+ foreach cdata vertex={%
+ % 0, 3, 6, 9
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@A\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@D\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@G\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@tensor@J\endvertex #1%
+ },
+ fill path={%
+ \pgfpathmoveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@A\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@B\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@C\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@D\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@E\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@F\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@G\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@H\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@I\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@J\endvertex}%
+ \pgfpathcurveto {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@K\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@L\endvertex}%
+ {\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@tensor@A\endvertex}%
+ \pgfpathclose
+ },
+ serialize except vertices=\let\pgfplotsretval\pgfutil@empty,%
+ deserialize except vertices=,
+ get pdf shading type=7,
+ get num vertices=\def\pgfplotsretval{16},
+ get num cdata vertices=\def\pgfplotsretval{4},
+}%
+
+% A bicubic patch with 16 points.
+%
+% It expects points in the order (i.e. in matrix ordering, row-wise):
+%
+% AD BD CD DD
+% AC BC CC DC
+% AB BB CB DB
+% AA BA CA DA
+%
+\pgfplotsdeclarepatchclass{bicubic}{%
+ new=\def\pgfplotspatchclass@bicubic@row{A}\def\pgfplotspatchclass@bicubic@col{A},
+ set next vertex={%
+ % defines \pgfplotspatchclass@bicubic@AA ... \pgfplotspatchclass@bicubic@DD (16 points)
+ \expandafter\edef\csname pgfplotspatchclass@bicubic@\pgfplotspatchclass@bicubic@row\pgfplotspatchclass@bicubic@col\endcsname{#1}%
+ \if D\pgfplotspatchclass@bicubic@row
+ \def\pgfplotspatchclass@bicubic@row{A}%
+ \if D\pgfplotspatchclass@bicubic@col
+ \def\pgfplotspatchclass@bicubic@col{A}%
+ \pgfplotspatchready
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@bicubic@col\csname pgfpptchindexnext@\pgfplotspatchclass@bicubic@col\endcsname
+ \fi
+ \else
+ \expandafter\let\expandafter\pgfplotspatchclass@bicubic@row\csname pgfpptchindexnext@\pgfplotspatchclass@bicubic@row\endcsname
+ \fi
+ },
+ sample in unit cube={%
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.333333333}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{0.666666666}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0}%
+ #1%
+ %
+ %
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0.333333333}%
+ #1%
+ \def\pgfplotspatchclassx{0.333333333}%
+ \def\pgfplotspatchclassy{0.333333333}%
+ #1%
+ \def\pgfplotspatchclassx{0.666666666}%
+ \def\pgfplotspatchclassy{0.333333333}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0.333333333}%
+ #1%
+ %
+ %
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{0.666666666}%
+ #1%
+ \def\pgfplotspatchclassx{0.333333333}%
+ \def\pgfplotspatchclassy{0.666666666}%
+ #1%
+ \def\pgfplotspatchclassx{0.666666666}%
+ \def\pgfplotspatchclassy{0.666666666}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{0.666666666}%
+ #1%
+ %
+ %
+ \def\pgfplotspatchclassx{0}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0.333333333}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{0.666666666}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ \def\pgfplotspatchclassx{1}%
+ \def\pgfplotspatchclassy{1}%
+ #1%
+ %
+ %
+ %
+ \pgfplotspatchready
+ },%
+ first vertex=\expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex,
+ foreach vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AB\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BB\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CB\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DB\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AC\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BC\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CC\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DC\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AD\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@BD\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@CD\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DD\endvertex #1%
+ },
+ foreach cdata vertex={%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DA\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@DD\endvertex #1%
+ \expandafter\pgfplotspatchvertex\pgfplotspatchclass@bicubic@AD\endvertex #1%
+ },
+ fill path={%
+ % Visualize the patch boundary using four bezier curves.
+ %
+ % This involves a change from Lagrange to bezier
+ % representation of the boundary curves.
+ %
+ \pgfpathmoveto{\expandafter\pgfplotspointpatchvertex\pgfplotspatchclass@bicubic@AA\endvertex}%
+ \pgfplotspathcubicfrominterpolation
+ {\pgfplotspatchclass@bicubic@AA}
+ {\pgfplotspatchclass@bicubic@BA}
+ {\pgfplotspatchclass@bicubic@CA}
+ {\pgfplotspatchclass@bicubic@DA}%
+ \pgfplotspathcubicfrominterpolation
+ {\pgfplotspatchclass@bicubic@DA}
+ {\pgfplotspatchclass@bicubic@DB}
+ {\pgfplotspatchclass@bicubic@DC}
+ {\pgfplotspatchclass@bicubic@DD}%
+ \pgfplotspathcubicfrominterpolation
+ {\pgfplotspatchclass@bicubic@DD}
+ {\pgfplotspatchclass@bicubic@CD}
+ {\pgfplotspatchclass@bicubic@BD}
+ {\pgfplotspatchclass@bicubic@AD}%
+ \pgfplotspathcubicfrominterpolation
+ {\pgfplotspatchclass@bicubic@AD}
+ {\pgfplotspatchclass@bicubic@AC}
+ {\pgfplotspatchclass@bicubic@AB}
+ {\pgfplotspatchclass@bicubic@AA}%
+ \pgfpathclose
+ },
+ stream to shader={%
+ \begingroup
+ %
+ % AD BD CD DD
+ % AC BC CC DC
+ % AB BB CB DB
+ % AA BA CA DA
+ %
+ % STEP 1: ensure that the patch's coordinates are streamed in
+ % a sequence which is compatible with the DEPTH of the
+ % corners.
+ %
+ % we use
+ % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+ % which works for bilinear, biquadratic, and bicubic
+ %
+ % define helper macros which are input for
+ % \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth:
+ \let\pgfplotspatchclass@rect@A=\pgfplotspatchclass@bicubic@AA
+ \let\pgfplotspatchclass@rect@B=\pgfplotspatchclass@bicubic@DA
+ \let\pgfplotspatchclass@rect@C=\pgfplotspatchclass@bicubic@DD
+ \let\pgfplotspatchclass@rect@D=\pgfplotspatchclass@bicubic@AD
+ \pgfplotspatchclass@rect@to@coonspatch@findshadingsequence@for@depth
+ {pgfplotspatchclass@rect@}{\Pcur}{\Pnextseq}%
+ %
+ %\message{using \Pcur\space(set = \Pnextseq)^^J}%
+ % now, translate the result into our matrix form.
+ % This means to (a) identify the FIRST point which needs to be
+ % streamed (it is stored in \Pcur as 'A', 'B', 'C', or 'D')
+ % and (b) keep in mind that we have to take care of the
+ % sequence in which points are streamed ("forward" means to
+ % rotate the matrix elements and "backward" means to transpose
+ % the "forward" result).
+ %
+ \if A\Pcur
+ % Ah - the point "AA" needs to be streamed as first.
+ %
+ % Well, this is simple: take the matrix as-is!
+ % simply copy 1:1
+ \let\P@AA=\pgfplotspatchclass@bicubic@AA
+ \let\P@BA=\pgfplotspatchclass@bicubic@BA
+ \let\P@CA=\pgfplotspatchclass@bicubic@CA
+ \let\P@DA=\pgfplotspatchclass@bicubic@DA
+ \let\P@AB=\pgfplotspatchclass@bicubic@AB
+ \let\P@BB=\pgfplotspatchclass@bicubic@BB
+ \let\P@CB=\pgfplotspatchclass@bicubic@CB
+ \let\P@DB=\pgfplotspatchclass@bicubic@DB
+ \let\P@AC=\pgfplotspatchclass@bicubic@AC
+ \let\P@BC=\pgfplotspatchclass@bicubic@BC
+ \let\P@CC=\pgfplotspatchclass@bicubic@CC
+ \let\P@DC=\pgfplotspatchclass@bicubic@DC
+ \let\P@AD=\pgfplotspatchclass@bicubic@AD
+ \let\P@BD=\pgfplotspatchclass@bicubic@BD
+ \let\P@CD=\pgfplotspatchclass@bicubic@CD
+ \let\P@DD=\pgfplotspatchclass@bicubic@DD
+ \fi
+ \if B\Pcur
+ % the "DA" point needs to be streamed as first.
+ %
+ % Reorder
+ % AD BD CD DD
+ % AC BC CC DC
+ % AB BB CB DB
+ % AA BA CA DA
+ % to
+ % AA AB AC AD
+ % BA BB BC BD
+ % CA CB CC CD
+ % DA DB DC DD
+ %
+ \let\P@AA=\pgfplotspatchclass@bicubic@DA
+ \let\P@BA=\pgfplotspatchclass@bicubic@DB
+ \let\P@CA=\pgfplotspatchclass@bicubic@DC
+ \let\P@DA=\pgfplotspatchclass@bicubic@DD
+ \let\P@AB=\pgfplotspatchclass@bicubic@CA
+ \let\P@BB=\pgfplotspatchclass@bicubic@CB
+ \let\P@CB=\pgfplotspatchclass@bicubic@CC
+ \let\P@DB=\pgfplotspatchclass@bicubic@CD
+ \let\P@AC=\pgfplotspatchclass@bicubic@BA
+ \let\P@BC=\pgfplotspatchclass@bicubic@BB
+ \let\P@CC=\pgfplotspatchclass@bicubic@BC
+ \let\P@DC=\pgfplotspatchclass@bicubic@BD
+ \let\P@AD=\pgfplotspatchclass@bicubic@AA
+ \let\P@BD=\pgfplotspatchclass@bicubic@AB
+ \let\P@CD=\pgfplotspatchclass@bicubic@AC
+ \let\P@DD=\pgfplotspatchclass@bicubic@AD
+ \fi
+ \if C\Pcur
+ % the "DD" point needs to be streamed as first.
+ %
+ % Reorder
+ % AD BD CD DD
+ % AC BC CC DC
+ % AB BB CB DB
+ % AA BA CA DA
+ % to
+ % DA CA BA AA
+ % DB CB BB AB
+ % DC CC BC AC
+ % DD CD BD AD
+ %
+ \let\P@AA=\pgfplotspatchclass@bicubic@DD
+ \let\P@BA=\pgfplotspatchclass@bicubic@CD
+ \let\P@CA=\pgfplotspatchclass@bicubic@BD
+ \let\P@DA=\pgfplotspatchclass@bicubic@AD
+ \let\P@AB=\pgfplotspatchclass@bicubic@DC
+ \let\P@BB=\pgfplotspatchclass@bicubic@CC
+ \let\P@CB=\pgfplotspatchclass@bicubic@BC
+ \let\P@DB=\pgfplotspatchclass@bicubic@AC
+ \let\P@AC=\pgfplotspatchclass@bicubic@DB
+ \let\P@BC=\pgfplotspatchclass@bicubic@CB
+ \let\P@CC=\pgfplotspatchclass@bicubic@BB
+ \let\P@DC=\pgfplotspatchclass@bicubic@AB
+ \let\P@AD=\pgfplotspatchclass@bicubic@DA
+ \let\P@BD=\pgfplotspatchclass@bicubic@CA
+ \let\P@CD=\pgfplotspatchclass@bicubic@BA
+ \let\P@DD=\pgfplotspatchclass@bicubic@AA
+ \fi
+ \if D\Pcur
+ % the "AD" point needs to be streamed as first.
+ %
+ % Reorder
+ % AD BD CD DD
+ % AC BC CC DC
+ % AB BB CB DB
+ % AA BA CA DA
+ % to
+ % DD DC DB DA
+ % CD CC CB CA
+ % BD BC BB BA
+ % AD AC AB AA
+ %
+ \let\P@AA=\pgfplotspatchclass@bicubic@AD
+ \let\P@BA=\pgfplotspatchclass@bicubic@AC
+ \let\P@CA=\pgfplotspatchclass@bicubic@AB
+ \let\P@DA=\pgfplotspatchclass@bicubic@AA
+ \let\P@AB=\pgfplotspatchclass@bicubic@BD
+ \let\P@BB=\pgfplotspatchclass@bicubic@BC
+ \let\P@CB=\pgfplotspatchclass@bicubic@BB
+ \let\P@DB=\pgfplotspatchclass@bicubic@BA
+ \let\P@AC=\pgfplotspatchclass@bicubic@CD
+ \let\P@BC=\pgfplotspatchclass@bicubic@CC
+ \let\P@CC=\pgfplotspatchclass@bicubic@CB
+ \let\P@DC=\pgfplotspatchclass@bicubic@CA
+ \let\P@AD=\pgfplotspatchclass@bicubic@DD
+ \let\P@BD=\pgfplotspatchclass@bicubic@DC
+ \let\P@CD=\pgfplotspatchclass@bicubic@DB
+ \let\P@DD=\pgfplotspatchclass@bicubic@DA
+ \fi
+ \ifx\Pnextseq\pgfutil@empty
+ \else
+ % reverse the ordering. This means to transpose the
+ % matrix:
+ \pgfplotspatchclass@bicubic@transpose
+ \fi
+ %
+ % Step: convert to tensor bezier representation.
+ %
+ % Converting a 2d tensor product lagrangian interpoland to a
+ % 2d tensor product bezier interpoland can be achieved by
+ % means of 1d algorithms along LINES in the matrix.
+ %
+ % The underlying proof for this is related to the tensor
+ % product form: the U and V coordinates are orthogonal to each
+ % other, so we can redistribute all intermediate results. (I
+ % do not have the real proof, so this hand-waving argument has
+ % to be enough). I verified its results experimentally.
+ %
+ % Note that the underlying 1d operation is the same as for
+ % 'patch type=cubic spline' . We only need to apply it to all
+ % lines in U direction and afterwards to all lines in V
+ % direction.
+ %
+ \def\pgfplotspatchvertexaddXY@expanded##1\times{%
+ \edef\pgfplots@loc@TMPa{##1}%
+ \expandafter\pgfplotspatchvertexaddXY\pgfplots@loc@TMPa\times
+ }%
+ %
+ % this macro operates on \pgfplots@line{[ABCD]}, see below:
+ \def\pgfplots@apply@to@line{%
+ \pgfplotspatchvertexaccumstart
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{-0.833333}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{3}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{-1.5}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{D}\times{0.3333333}%
+ \pgfplotspatchvertexfinish\pgfplots@controlpoint@A
+ %
+ \pgfplotspatchvertexaccumstart
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{A}\times{0.333333}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{B}\times{-1.5}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{C}\times{3}%
+ \pgfplotspatchvertexaddXY@expanded\pgfplots@line{D}\times{-0.833333}%
+ \pgfplotspatchvertexfinish\pgfplots@controlpoint@B
+ %
+ \expandafter\expandafter\expandafter\let\pgfplots@line{B}=\pgfplots@controlpoint@A
+ \expandafter\expandafter\expandafter\let\pgfplots@line{C}=\pgfplots@controlpoint@B
+ }%
+ %
+ \def\pgfplots@line##1{\csname P@##1A\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@##1B\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@##1C\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@##1D\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ %
+ \def\pgfplots@line##1{\csname P@A##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@B##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@C##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ \def\pgfplots@line##1{\csname P@D##1\endcsname}%
+ \pgfplots@apply@to@line
+ %
+ % OK. The tensor product representation is READY.
+ %
+ \pgfplotsplothandlermesh@shade@cubic@tensor
+ \endgroup
+ },
+ triangulate={%
+ \let\pgfplotsplothandlermesh@patchclass@=\pgfplotsplothandlermesh@patchclass
+ \def\pgfplotsplothandlermesh@patchclass{triangle}%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{new}%
+ % Ok. Now create a lot of triangles.
+ %
+ % FIXME: The ordering is not arbitrary (unless z buffer=sort is in effect).
+ %
+ % ##1: the row index of the cell to be triangulated (either A,B,or C)
+ % ##2: the col index of the cell to be triangulated (either A,B,or C)
+ % ##3: the 1. 'set edge visible' value for the first triangle
+ % ##4: the 2. 'set edge visible' value for the first triangle
+ % ##5: the 3. 'set edge visible' value for the first triangle
+ % ##6: the 1. 'set edge visible' value for the second triangle
+ % ##7: the 2. 'set edge visible' value for the second triangle
+ % ##8: the 3. 'set edge visible' value for the second triangle
+ \def\pgfplots@bicubic@triangulate@cell##1##2##3##4##5##6##7##8{%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}0##3%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}1##4%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}2##5%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1##2\endcsname}%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname##2\endcsname}%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname \csname pgfpptchindexnext@##2\endcsname\endcsname}%
+ %
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}0##6%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}1##7%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}2##8%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1\csname pgfpptchindexnext@##2\endcsname\endcsname}%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@##1##2\endcsname}%
+ \pgfplotsplothandlermesh@setnextvertex{\csname pgfplotspatchclass@bicubic@\csname pgfpptchindexnext@##1\endcsname \csname pgfpptchindexnext@##2\endcsname\endcsname}%
+ %
+ }%
+ %
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}01%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}10%
+ \pgfplotspatchclass{\pgfplotsplothandlermesh@patchclass}{set edge visible}20%
+ \pgfplots@bicubic@triangulate@cell AA100 100%
+ \pgfplots@bicubic@triangulate@cell BA100 000%
+ \pgfplots@bicubic@triangulate@cell CA110 000%
+ %
+ \pgfplots@bicubic@triangulate@cell AB000 100%
+ \pgfplots@bicubic@triangulate@cell BB000 000%
+ \pgfplots@bicubic@triangulate@cell CB010 000%
+ %
+ \pgfplots@bicubic@triangulate@cell AC000 101%
+ \pgfplots@bicubic@triangulate@cell BC000 001%
+ \pgfplots@bicubic@triangulate@cell CC010 001%
+ \let\pgfplotsplothandlermesh@patchclass=\pgfplotsplothandlermesh@patchclass@
+ },%
+ serialize except vertices=\let\pgfplotsretval\pgfutil@empty,%
+ deserialize except vertices=,
+ get pdf shading type=7,
+ get num vertices=\def\pgfplotsretval{16},
+ get num cdata vertices=\def\pgfplotsretval{4},
+}%
+
+% Transpose a bicubic matrix (4x4).
+%
+% Reorder
+% AD BD CD DD
+% AC BC CC DC
+% AB BB CB DB
+% AA BA CA DA
+% to
+% DA DB DC DD
+% CA CB CC CD
+% BA BB BC BD
+% AA AB AC AD
+\def\pgfplotspatchclass@bicubic@transpose{%
+ \pgfplotsutil@swap\P@AB\P@BA
+ \pgfplotsutil@swap\P@CA\P@AC
+ \pgfplotsutil@swap\P@DA\P@AD
+ \pgfplotsutil@swap\P@CB\P@BC
+ \pgfplotsutil@swap\P@BD\P@DB
+ \pgfplotsutil@swap\P@DC\P@CD
+}
+
+% Transpose a bicubic matrix (4x4).
+%
+% Reorder
+% AC BC CC
+% AB BB CB
+% AA BA CA
+% to
+% CA CB CC
+% BA BB BC
+% AA AB AC
+\def\pgfplotspatchclass@biquad@transpose{%
+ \pgfplotsutil@swap\P@AB\P@BA
+ \pgfplotsutil@swap\P@CA\P@AC
+ \pgfplotsutil@swap\P@CB\P@BC
+}
+
+% Expects that a 4x4 matrix in tensor bezier representation where
+% A = left end point
+% B = first control point
+% C = second control point
+% D = right end point
+%
+% and the coordinates are stored in \csname P@[ABCD][ABCD]\endcsname
+%
+% Streaming starts with \P@AA and is applied rowwise.
+\def\pgfplotsplothandlermesh@shade@cubic@tensor{%
+ % Stream it to the shader. Note that the shader has a
+ % DIFFERENT ordering; it expects points in the cyclic ordering
+ %
+ % AA BA CA DA DB DC DD CD BD AD AC AB BB CB CC BC
+ %
+ % note furthermore that only the corners have "point meta" in
+ % this shading :-(
+ %
+ \expandafter\pgfplotspatchvertex\P@AA\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BA\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CA\endvertex}{\pgfplotspointmetatransformed}%
+ \expandafter\pgfplotspatchvertex\P@DA\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ %
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@DB\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@DC\endvertex}{\pgfplotspointmetatransformed}%
+ \expandafter\pgfplotspatchvertex\P@DD\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ %
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CD\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BD\endvertex}{\pgfplotspointmetatransformed}%
+ \expandafter\pgfplotspatchvertex\P@AD\endvertex
+ \let\pgfplots@current@point@meta=\pgfplotspatchvertexmeta
+ \pgfplotsaxisvisphasetransformpointmeta
+ \pgfplotslibrarysurfstreamcoord{\pgfqpoint\pgfplotspatchvertexx\pgfplotspatchvertexy}{\pgfplotspointmetatransformed}%
+ %
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@AC\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@AB\endvertex}{\pgfplotspointmetatransformed}%
+ %
+ %
+ \pgfplotspatchclass{\pgfplotspatchclassname}{get pdf shading type}%
+ \if 7\pgfplotsretval
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BB\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CB\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@CC\endvertex}{\pgfplotspointmetatransformed}%
+ \pgfplotslibrarysurfstreamcoord{\expandafter\pgfplotspointpatchvertex\P@BC\endvertex}{\pgfplotspointmetatransformed}%
+ \else
+ % assume 'get pdf shading type=6' - it does not contain the
+ % inner vertices.
+ \fi
+}
+\endinput