summaryrefslogtreecommitdiff
path: root/inference2.py
diff options
context:
space:
mode:
authorpks <pks@pks.rocks>2025-12-05 22:28:02 +0100
committerpks <pks@pks.rocks>2025-12-05 22:28:02 +0100
commit406c46ce1cfaf56b3b7334152dedd3101d50207e (patch)
tree118603c0aa40509f695f6b14c90909ff8787e154 /inference2.py
parent64f714542dbe8ee015afa94b3418d8f51c558070 (diff)
WIP
Diffstat (limited to 'inference2.py')
-rw-r--r--inference2.py179
1 files changed, 0 insertions, 179 deletions
diff --git a/inference2.py b/inference2.py
deleted file mode 100644
index 67e633a..0000000
--- a/inference2.py
+++ /dev/null
@@ -1,179 +0,0 @@
-#!/usr/bin/env python3
-
-import argparse
-import datasets
-import json
-import os
-import requests
-import sys
-import torch
-from glob import glob
-from PIL import Image
-from transformers import AutoProcessor, AutoModelForImageTextToText
-
-
-def clean_str(s):
- return s.removeprefix("```json").removesuffix("```").replace("\n", "").strip()
-
-
-def captioning_prompt(image):
- return [
- {
- "role": "system",
- "content": [{"type": "text", "text": "You are a professional English-German translator and also a renowned photography critic."}]
- },
- {
- "role": "user",
- "content": [
- {"type": "image", "image": image},
- {"type": "text", "text": "Write a detailed caption for this image in a single sentence. Translate the caption into German. The output needs to be JSON, the keys being 'English' and 'German' for the respective captions. Only output the JSON, nothing else."}
- ]
- }
- ]
-
-
-def captioning_prompt_with_source(image, source):
- prompt = captioning_prompt(image)
- prefix = json.dumps({"English": source}).removesuffix("}") + ', "German": "'
- prompt.append({"role": "assistant", "content": [{"type": "text", "text": prefix}]})
-
- return prompt
-
-
-def translation_prompt(source):
- return [
- {
- "role": "system",
- "content": [{"type": "text", "text": "You are a professional English-German translator."}]
- },
- {
- "role": "user",
- "content": [
- {"type": "text", "text": f"Translate the following caption into German. The output needs to be JSON, the only being 'Translation' for the translation. Only output the JSON, nothing else. Caption: {source}"}
- ]
- }
- ]
-
-
-def make_inputs(processor,
- messages,
- device):
- return processor.apply_chat_template(
- messages,
- add_generation_prompt=True,
- tokenize=True,
- return_dict=True,
- return_tensors="pt"
- ).to(device, dtype=torch.bfloat16)
-
-
-def generate_and_parse(model,
- processor,
- messages,
- args,
- example_id=None):
- sys.stderr.write(f"Processing {example_id=}\n")
- inputs = make_inputs(processor, messages, model.device)
- input_len = inputs["input_ids"].shape[-1]
-
- stop_token_ids = [processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<end_of_turn>")]
-
- with torch.inference_mode():
- generation = model.generate(
- **inputs,
- max_new_tokens=args.max_new_tokens,
- do_sample=not args.do_not_sample,
- temperature=args.temperature,
- top_p=args.top_p,
- top_k=args.top_k,
- eos_token_id=stop_token_ids,
- disable_compile=True,
- )
-
- output_tokens = generation[0][input_len:]
- output_text = clean_str(processor.decode(output_tokens, skip_special_tokens=True))
-
- try:
- return json.loads(output_text)
- except Exception:
- if example_id is not None:
- sys.stderr.write(
- f"Error loading JSON from string '{output_text}' for id={example_id}\n"
- )
- else:
- sys.stderr.write(
- f"Error loading JSON from string '{output_text}'\n"
- )
- return output_text
-
-
-def main():
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", default="google/gemma-3-4b-it", type=str)
- parser.add_argument("--attention-implementation", default="eager", type=str)
- parser.add_argument("--lora-adapter", default=None, type=str)
- parser.add_argument("--mode", choices=["from_scratch", "with_prefix", "translate"], type=str, required=True)
- parser.add_argument("--dataset", default="asdf2k/caption_translation", type=str)
- parser.add_argument("--data-subset", choices=["train", "dev", "test"], default="test", type=str)
- parser.add_argument("--max-new-tokens", default=300, type=int)
- parser.add_argument("--top-p", default=1.0, type=int)
- parser.add_argument("--top-k", default=50, type=int)
- parser.add_argument("--temperature", default=0.8, type=int)
- parser.add_argument("--do-not-sample", action="store_true")
- args = parser.parse_args()
-
- model = AutoModelForImageTextToText.from_pretrained(
- args.model,
- device_map="cuda",
- dtype=torch.bfloat16,
- attn_implementation=args.attention_implementation,
- ).eval()
- processor = AutoProcessor.from_pretrained(args.model, use_fast=True)
-
- if args.lora_adapter:
- from peft import PeftModel
- model = PeftModel.from_pretrained(model, args.lora_adapter)
-
- dataset = datasets.load_dataset(args.dataset)[args.data_subset]
-
- if args.mode == "from_scratch": # Generate caption & translation from scratch
- for x in dataset:
- output = generate_and_parse(
- model,
- processor,
- captioning_prompt(x["image"]),
- args,
- example_id=x["id"],
- )
- print(f"{x['id']}\t{json.dumps(output)}")
-
- elif args.mode == "translate": # Generate German translation given English source
- for x in dataset:
- input_data = json.loads(x["assistant"])
- output = generate_and_parse(
- model,
- processor,
- translation_prompt(input_data["English"]),
- args,
- example_id=x["id"],
- )
- output = {"English": input_data["English"], "German": output["Translation"]}
- print(f"{x['id']}\t{json.dumps(output)}")
-
- elif args.mode == "with_prefix": # Generate German translation given English caption and image
- for x in dataset:
- assistant_output_as_input = json.loads(x["assistant"])
- output = generate_and_parse(
- model,
- processor,
- captioning_prompt_with_source(x["image"], assistant_output_as_input["English"]),
- args,
- example_id=x["id"],
- )
- print(f"{x['id']}\t{json.dumps(output)}")
- else:
- sys.stderr.write(f"Unkown mode '{args.mode}'")
-
-
-if __name__ == "__main__":
- main()