diff options
| author | pks <pks@pks.rocks> | 2025-12-05 22:23:16 +0100 |
|---|---|---|
| committer | pks <pks@pks.rocks> | 2025-12-05 22:23:16 +0100 |
| commit | f243793b76a8ace9b8a690cb02afb0e91a5b0531 (patch) | |
| tree | 7ec30fdd8642a3edfe41ed09ced8271200150909 /inference.py | |
| parent | c0ed7b3ada7f41faaad9a2a64697d6a0e385ed86 (diff) | |
WIP
Diffstat (limited to 'inference.py')
| -rwxr-xr-x | inference.py | 110 |
1 files changed, 53 insertions, 57 deletions
diff --git a/inference.py b/inference.py index 69ab33b..c8adb16 100755 --- a/inference.py +++ b/inference.py @@ -10,7 +10,7 @@ import torch from glob import glob from PIL import Image -from transformers import AutoProcessor, Gemma3ForConditionalGeneration +from transformers import AutoProcessor, AutoModelForImageTextToText def clean_str(s): @@ -71,18 +71,19 @@ def make_inputs(processor, def main(): parser = argparse.ArgumentParser() - parser.add_argument("--model", default="google/gemma-3-4b-it") - parser.add_argument("--lora-adapter", default=None) - parser.add_argument("--mode", choices=["from_scratch", "with_prefix", "translate"]) + parser.add_argument("--model", default="google/gemma-3-4b-it", type=str) + parser.add_argument("--attention-implementation", default="eager", type=str) + parser.add_argument("--lora-adapter", default=None, type=str) + parser.add_argument("--mode", choices=["from_scratch", "with_prefix", "translate"], type=str, required=True) parser.add_argument("--dataset", default="asdf2k/caption_translation", type=str) - parser.add_argument("--data-subset", choices=["train", "dev", "test"], default="test") + parser.add_argument("--data-subset", choices=["train", "dev", "test"], default="test", type=str) args = parser.parse_args() - model = Gemma3ForConditionalGeneration.from_pretrained( + model = AutoModelForImageTextToText.from_pretrained( args.model, device_map="cuda", dtype=torch.bfloat16, - attn_implementation="eager", + attn_implementation=args.attention_implementation, ).eval() processor = AutoProcessor.from_pretrained(args.model, use_fast=True) @@ -94,7 +95,7 @@ def main(): if args.mode == "translate": # Generate German translation given English source for x in dataset: - sys.stderr.write(f"Processing id={x['id']=}\n") + sys.stderr.write(f"Processing id={x['id']}\n") data = json.loads(x["assistant"]) @@ -104,21 +105,23 @@ def main(): input_len = inputs["input_ids"].shape[-1] with torch.inference_mode(): - generation = model.generate(**inputs, - max_new_tokens=300, - do_sample=True, - top_p=1.0, - top_k=50) - generation = generation[0][input_len:] - - decoded = clean_str(processor.decode(generation, skip_special_tokens=True)) + output = model.generate(**inputs, + max_new_tokens=args.max_new_tokens, + do_sample=args.do_sample, + temperature=args.temperature, + top_p=args.top_p, + top_k=args.top_k, + disable_compile=True) + output = generation[0][input_len:] + + output = clean_str(processor.decode(output, skip_special_tokens=True)) + try: - new_data = json.loads(decoded) + output = json.loads(output) except: - sys.stderr.write(f"Error loading JSON from string '{decoded}' for {filename=}\n") + sys.stderr.write(f"Error loading JSON from string '{output}' for id{x['id']}\n") - data.update(new_data) - print(json.dumps(data)) + print(json.dumps(output)) elif args.mode == "from_scratch": # Generate caption & translation from scratch for x in dataset: @@ -129,57 +132,50 @@ def main(): input_len = inputs["input_ids"].shape[-1] with torch.inference_mode(): - generation = model.generate(**inputs, - max_new_tokens=300, - do_sample=True, - temperature=0.8, - top_p=1.0, - top_k=50, - eos_token_id=stop_token_ids, - disable_compile=True) - generation = generation[0][input_len:] - - decoded = clean_str(processor.decode(generation, skip_special_tokens=True)) + output = model.generate(**inputs, + max_new_tokens=args.max_new_tokens, + do_sample=args.do_sample, + temperature=args.temperature, + top_p=args.top_p, + top_k=args.top_k, + eos_token_id=stop_token_ids, + disable_compile=True) + output = output[0][input_len:] + + output = clean_str(processor.decode(output, skip_special_tokens=True)) try: - _ = json.loads(decoded) + output = json.loads(output) except: - sys.stderr.write(f"Error loading JSON from string '{decoded}' for {filename=}\n") + sys.stderr.write(f"Error loading JSON from string '{output}' for id{x['id']}\n") - sys.stderr.write(f"{decoded=}\n") - with open(f"{os.path.basename(filename).removesuffix('.jpg')}.jsonl", "w") as f: - f.write(f"{decoded}\n") + print(json.dumps(output)) elif args.mode == "with_prefix": # Generate German translation given English caption and image - for filename in glob("./baseline/files_test/*.jsonl"): - image = "../d/Images/" + os.path.basename(filename).removesuffix(".jsonl") + ".jpg" - sys.stderr.write(f"Processing {filename=}\n") - with open(filename, "r+") as f: - data = json.loads(f.read()) + for x in dataset: + sys.stderr.write(f"Processing id={x['id']}\n") + data = json.loads(x['assistant_reply']) prompt = captioning_prompt_with_source(Image.open(image), data["English"]) inputs = make_inputs(processor, prompt, model.device) - input_len = inputs["input_ids"].shape[-1] # Will not cut off assistant prefix with torch.inference_mode(): - generation = model.generate(**inputs, - max_new_tokens=300, - do_sample=True, - top_p=1.0, - top_k=50) - generation = generation[0] # batch size 1 - truncated_generation = generation[input_len:] - - decoded = processor.decode(truncated_generation, skip_special_tokens=True).removeprefix("```json").removesuffix("```").replace("\n", "").strip() + output = model.generate(**inputs, + max_new_tokens=args.max_new_tokens, + do_sample=args.do_sample, + args.temperature, + top_p=args.top_p, + top_k=args.top_k) + output = generation[0][input_len:] + + output = clean_str(processor.decode(output, skip_special_tokens=True)) try: - _ = json.loads(decoded) + output = json.loads(output) except: - sys.stderr.write(f"Error loading JSON from string '{decoded}' for {filename=}\n") - - sys.stderr.write(f"{decoded=}\n") - with open(f"{os.path.basename(filename)}", "w") as f: - f.write(f"{decoded}\n") + sys.stderr.write(f"Error loading JSON from string '{output}' for id{x['id']}\n") + + print(json.dumps(output)) else: sys.stderr.write(f"Unkown mode '{args.mode}'") |
