diff options
| author | pks <pks@pks.rocks> | 2025-12-05 22:28:02 +0100 |
|---|---|---|
| committer | pks <pks@pks.rocks> | 2025-12-05 22:28:02 +0100 |
| commit | 406c46ce1cfaf56b3b7334152dedd3101d50207e (patch) | |
| tree | 118603c0aa40509f695f6b14c90909ff8787e154 /inference.py | |
| parent | 64f714542dbe8ee015afa94b3418d8f51c558070 (diff) | |
WIP
Diffstat (limited to 'inference.py')
| -rw-r--r-- | inference.py | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/inference.py b/inference.py new file mode 100644 index 0000000..67e633a --- /dev/null +++ b/inference.py @@ -0,0 +1,179 @@ +#!/usr/bin/env python3 + +import argparse +import datasets +import json +import os +import requests +import sys +import torch +from glob import glob +from PIL import Image +from transformers import AutoProcessor, AutoModelForImageTextToText + + +def clean_str(s): + return s.removeprefix("```json").removesuffix("```").replace("\n", "").strip() + + +def captioning_prompt(image): + return [ + { + "role": "system", + "content": [{"type": "text", "text": "You are a professional English-German translator and also a renowned photography critic."}] + }, + { + "role": "user", + "content": [ + {"type": "image", "image": image}, + {"type": "text", "text": "Write a detailed caption for this image in a single sentence. Translate the caption into German. The output needs to be JSON, the keys being 'English' and 'German' for the respective captions. Only output the JSON, nothing else."} + ] + } + ] + + +def captioning_prompt_with_source(image, source): + prompt = captioning_prompt(image) + prefix = json.dumps({"English": source}).removesuffix("}") + ', "German": "' + prompt.append({"role": "assistant", "content": [{"type": "text", "text": prefix}]}) + + return prompt + + +def translation_prompt(source): + return [ + { + "role": "system", + "content": [{"type": "text", "text": "You are a professional English-German translator."}] + }, + { + "role": "user", + "content": [ + {"type": "text", "text": f"Translate the following caption into German. The output needs to be JSON, the only being 'Translation' for the translation. Only output the JSON, nothing else. Caption: {source}"} + ] + } + ] + + +def make_inputs(processor, + messages, + device): + return processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt" + ).to(device, dtype=torch.bfloat16) + + +def generate_and_parse(model, + processor, + messages, + args, + example_id=None): + sys.stderr.write(f"Processing {example_id=}\n") + inputs = make_inputs(processor, messages, model.device) + input_len = inputs["input_ids"].shape[-1] + + stop_token_ids = [processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<end_of_turn>")] + + with torch.inference_mode(): + generation = model.generate( + **inputs, + max_new_tokens=args.max_new_tokens, + do_sample=not args.do_not_sample, + temperature=args.temperature, + top_p=args.top_p, + top_k=args.top_k, + eos_token_id=stop_token_ids, + disable_compile=True, + ) + + output_tokens = generation[0][input_len:] + output_text = clean_str(processor.decode(output_tokens, skip_special_tokens=True)) + + try: + return json.loads(output_text) + except Exception: + if example_id is not None: + sys.stderr.write( + f"Error loading JSON from string '{output_text}' for id={example_id}\n" + ) + else: + sys.stderr.write( + f"Error loading JSON from string '{output_text}'\n" + ) + return output_text + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument("--model", default="google/gemma-3-4b-it", type=str) + parser.add_argument("--attention-implementation", default="eager", type=str) + parser.add_argument("--lora-adapter", default=None, type=str) + parser.add_argument("--mode", choices=["from_scratch", "with_prefix", "translate"], type=str, required=True) + parser.add_argument("--dataset", default="asdf2k/caption_translation", type=str) + parser.add_argument("--data-subset", choices=["train", "dev", "test"], default="test", type=str) + parser.add_argument("--max-new-tokens", default=300, type=int) + parser.add_argument("--top-p", default=1.0, type=int) + parser.add_argument("--top-k", default=50, type=int) + parser.add_argument("--temperature", default=0.8, type=int) + parser.add_argument("--do-not-sample", action="store_true") + args = parser.parse_args() + + model = AutoModelForImageTextToText.from_pretrained( + args.model, + device_map="cuda", + dtype=torch.bfloat16, + attn_implementation=args.attention_implementation, + ).eval() + processor = AutoProcessor.from_pretrained(args.model, use_fast=True) + + if args.lora_adapter: + from peft import PeftModel + model = PeftModel.from_pretrained(model, args.lora_adapter) + + dataset = datasets.load_dataset(args.dataset)[args.data_subset] + + if args.mode == "from_scratch": # Generate caption & translation from scratch + for x in dataset: + output = generate_and_parse( + model, + processor, + captioning_prompt(x["image"]), + args, + example_id=x["id"], + ) + print(f"{x['id']}\t{json.dumps(output)}") + + elif args.mode == "translate": # Generate German translation given English source + for x in dataset: + input_data = json.loads(x["assistant"]) + output = generate_and_parse( + model, + processor, + translation_prompt(input_data["English"]), + args, + example_id=x["id"], + ) + output = {"English": input_data["English"], "German": output["Translation"]} + print(f"{x['id']}\t{json.dumps(output)}") + + elif args.mode == "with_prefix": # Generate German translation given English caption and image + for x in dataset: + assistant_output_as_input = json.loads(x["assistant"]) + output = generate_and_parse( + model, + processor, + captioning_prompt_with_source(x["image"], assistant_output_as_input["English"]), + args, + example_id=x["id"], + ) + print(f"{x['id']}\t{json.dumps(output)}") + else: + sys.stderr.write(f"Unkown mode '{args.mode}'") + + +if __name__ == "__main__": + main() |
