1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
#ifndef _SMALL_VECTOR_H_
#define _SMALL_VECTOR_H_
/* REQUIRES that T is POD (can be memcpy). won't work (yet) due to union with SMALL_VECTOR_POD==0 - may be possible to handle movable types that have ctor/dtor, by using explicit allocation, ctor/dtor calls. but for now JUST USE THIS FOR no-meaningful ctor/dtor POD types.
stores small element (<=SV_MAX items) vectors inline. recommend SV_MAX=sizeof(T)/sizeof(T*)>1?sizeof(T)/sizeof(T*):1. may not work if SV_MAX==0.
*/
#define SMALL_VECTOR_POD 1
#include <streambuf> // std::max - where to get this?
#include <cstring>
#include <cassert>
#include <stdint.h>
#include <new>
#include <stdint.h>
#include "swap_pod.h"
#include <boost/functional/hash.hpp>
//sizeof(T)/sizeof(T*)>1?sizeof(T)/sizeof(T*):1
template <class T,int SV_MAX=2>
class SmallVector {
// typedef unsigned short uint16_t;
public:
typedef SmallVector<T,SV_MAX> Self;
SmallVector() : size_(0) {}
typedef T const* const_iterator;
typedef T* iterator;
typedef T value_type;
typedef T &reference;
typedef T const& const_reference;
T *begin() { return size_>SV_MAX?data_.ptr:data_.vals; }
T const* begin() const { return const_cast<Self*>(this)->begin(); }
T *end() { return begin()+size_; }
T const* end() const { return begin()+size_; }
explicit SmallVector(size_t s) : size_(s) {
assert(s < 0xA000);
if (s <= SV_MAX) {
for (int i = 0; i < s; ++i) new(&data_.vals[i]) T();
} else {
capacity_ = s;
size_ = s;
data_.ptr = new T[s]; // TODO: replace this with allocator or ::operator new(sizeof(T)*s) everywhere
for (int i = 0; i < size_; ++i) new(&data_.ptr[i]) T();
}
}
SmallVector(size_t s, T const& v) : size_(s) {
assert(s < 0xA000);
if (s <= SV_MAX) {
for (int i = 0; i < s; ++i) data_.vals[i] = v;
} else {
capacity_ = s;
size_ = s;
data_.ptr = new T[s];
for (int i = 0; i < size_; ++i) data_.ptr[i] = v;
}
}
SmallVector(const Self& o) : size_(o.size_) {
if (size_ <= SV_MAX) {
std::memcpy(data_.vals,o.data_.vals,size_*sizeof(T));
// for (int i = 0; i < size_; ++i) data_.vals[i] = o.data_.vals[i];
} else {
capacity_ = size_ = o.size_;
data_.ptr = new T[capacity_];
std::memcpy(data_.ptr, o.data_.ptr, size_ * sizeof(T));
}
}
const Self& operator=(const Self& o) {
if (size_ <= SV_MAX) {
if (o.size_ <= SV_MAX) {
size_ = o.size_;
for (int i = 0; i < SV_MAX; ++i) data_.vals[i] = o.data_.vals[i];
} else {
capacity_ = size_ = o.size_;
data_.ptr = new T[capacity_];
std::memcpy(data_.ptr, o.data_.ptr, size_ * sizeof(T));
}
} else {
if (o.size_ <= SV_MAX) {
delete[] data_.ptr;
size_ = o.size_;
for (int i = 0; i < size_; ++i) data_.vals[i] = o.data_.vals[i];
} else {
if (capacity_ < o.size_) {
delete[] data_.ptr;
capacity_ = o.size_;
data_.ptr = new T[capacity_];
}
size_ = o.size_;
for (int i = 0; i < size_; ++i)
data_.ptr[i] = o.data_.ptr[i];
}
}
return *this;
}
~SmallVector() {
if (size_ <= SV_MAX) {
// skip if pod? yes, we required pod anyway. no need to destruct
#if !SMALL_VECTOR_POD
for (int i=0;i<size_;++i) data_.vals[i].~T();
#endif
} else
delete[] data_.ptr;
}
void clear() {
if (size_ > SV_MAX) {
delete[] data_.ptr;
}
size_ = 0;
}
bool empty() const { return size_ == 0; }
size_t size() const { return size_; }
inline void ensure_capacity(uint16_t min_size) {
assert(min_size > SV_MAX);
if (min_size < capacity_) return;
uint16_t new_cap = std::max(static_cast<uint16_t>(capacity_ << 1), min_size);
T* tmp = new T[new_cap];
std::memcpy(tmp, data_.ptr, capacity_ * sizeof(T));
delete[] data_.ptr;
data_.ptr = tmp;
capacity_ = new_cap;
}
private:
inline void copy_vals_to_ptr() {
capacity_ = SV_MAX * 2;
T* tmp = new T[capacity_];
for (int i = 0; i < SV_MAX; ++i) tmp[i] = data_.vals[i];
data_.ptr = tmp;
}
inline void ptr_to_small() {
assert(size_<=SV_MAX);
int *tmp=data_.ptr;
for (int i=0;i<size_;++i)
data_.vals[i]=tmp[i];
delete[] tmp;
}
public:
inline void push_back(T const& v) {
if (size_ < SV_MAX) {
data_.vals[size_] = v;
++size_;
return;
} else if (size_ == SV_MAX) {
copy_vals_to_ptr();
} else if (size_ == capacity_) {
ensure_capacity(size_ + 1);
}
data_.ptr[size_] = v;
++size_;
}
T& back() { return this->operator[](size_ - 1); }
const T& back() const { return this->operator[](size_ - 1); }
T& front() { return this->operator[](0); }
const T& front() const { return this->operator[](0); }
void pop_back() {
assert(size_>0);
--size_;
if (size_==SV_MAX)
ptr_to_small();
}
void compact() {
compact(size_);
}
// size must be <= size_ - TODO: test
void compact(uint16_t size) {
assert(size<=size_);
if (size_>SV_MAX) {
size_=size;
if (size<=SV_MAX)
ptr_to_small();
} else
size_=size;
}
void resize(size_t s, int v = 0) {
if (s <= SV_MAX) {
if (size_ > SV_MAX) {
T *tmp=data_.ptr;
for (int i = 0; i < s; ++i) data_.vals[i] = tmp[i];
delete[] tmp;
size_ = s;
return;
}
if (s <= size_) {
size_ = s;
return;
} else {
for (int i = size_; i < s; ++i)
data_.vals[i] = v;
size_ = s;
return;
}
} else {
if (size_ <= SV_MAX)
copy_vals_to_ptr();
if (s > capacity_)
ensure_capacity(s);
if (s > size_) {
for (int i = size_; i < s; ++i)
data_.ptr[i] = v;
}
size_ = s;
}
}
T& operator[](size_t i) {
if (size_ <= SV_MAX) return data_.vals[i];
return data_.ptr[i];
}
const T& operator[](size_t i) const {
if (size_ <= SV_MAX) return data_.vals[i];
return data_.ptr[i];
}
bool operator==(const Self& o) const {
if (size_ != o.size_) return false;
if (size_ <= SV_MAX) {
for (size_t i = 0; i < size_; ++i)
if (data_.vals[i] != o.data_.vals[i]) return false;
return true;
} else {
for (size_t i = 0; i < size_; ++i)
if (data_.ptr[i] != o.data_.ptr[i]) return false;
return true;
}
}
friend bool operator!=(const Self& a, const Self& b) {
return !(a==b);
}
void swap(Self& o) {
swap_pod(*this,o);
}
inline std::size_t hash_impl() const {
if (size_==0) return 0;
// if (size_==1) return boost::hash_value(data_.vals[0]);
if (size<= SV_MAX)
return boost::hash_range(data_.vals,data_.vals+size_);
return boost::hash_range(data_.ptr,data_.ptr+size_);
}
private:
union StorageType {
T vals[SV_MAX];
T* ptr;
};
StorageType data_;
uint16_t size_;
uint16_t capacity_; // only defined when size_ > __SV_MAX_STATIC
};
namespace boost {
// shouldn't need to nest this, but getting into trouble with tr1::hash linkage
}
template <class T,int M>
inline std::size_t hash_value(SmallVector<T,M> const& x) {
return x.hash_impl();
}
template <class T,int M>
inline void swap(SmallVector<T,M> &a,SmallVector<T,M> &b) {
a.swap(b);
}
typedef SmallVector<int,2> SmallVectorInt;
template <class T,int M>
void memcpy(void *out,SmallVector<T,M> const& v) {
std::memcpy(out,v.begin(),v.size()*sizeof(T));
}
#endif
|