1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
#ifndef _CCRP_H_
#define _CCRP_H_
#include <numeric>
#include <cassert>
#include <cmath>
#include <list>
#include <iostream>
#include <vector>
#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include "sampler.h"
#include "slice_sampler.h"
#include "m.h"
// Chinese restaurant process (Pitman-Yor parameters) with table tracking.
template <typename Dish, typename DishHash = boost::hash<Dish> >
class CCRP {
public:
CCRP(double disc, double strength) :
num_tables_(),
num_customers_(),
discount_(disc),
strength_(strength),
discount_prior_strength_(std::numeric_limits<double>::quiet_NaN()),
discount_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
strength_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
strength_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {
check_hyperparameters();
}
CCRP(double d_strength, double d_beta, double c_shape, double c_rate, double d = 0.9, double c = 1.0) :
num_tables_(),
num_customers_(),
discount_(d),
strength_(c),
discount_prior_strength_(d_strength),
discount_prior_beta_(d_beta),
strength_prior_shape_(c_shape),
strength_prior_rate_(c_rate) {
check_hyperparameters();
}
void check_hyperparameters() {
if (discount_ < 0.0 || discount_ >= 1.0) {
std::cerr << "Bad discount: " << discount_ << std::endl;
abort();
}
if (strength_ <= -discount_) {
std::cerr << "Bad strength: " << strength_ << " (discount=" << discount_ << ")" << std::endl;
abort();
}
}
double discount() const { return discount_; }
double strength() const { return strength_; }
void set_hyperparameters(double d, double s) {
discount_ = d; strength_ = s;
check_hyperparameters();
}
void set_discount(double d) { discount_ = d; check_hyperparameters(); }
void set_strength(double a) { strength_ = a; check_hyperparameters(); }
bool has_discount_prior() const {
return !std::isnan(discount_prior_strength_);
}
bool has_strength_prior() const {
return !std::isnan(strength_prior_shape_);
}
void clear() {
num_tables_ = 0;
num_customers_ = 0;
dish_locs_.clear();
}
unsigned num_tables() const {
return num_tables_;
}
unsigned num_tables(const Dish& dish) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
if (it == dish_locs_.end()) return 0;
return it->second.table_counts_.size();
}
unsigned num_customers() const {
return num_customers_;
}
unsigned num_customers(const Dish& dish) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
if (it == dish_locs_.end()) return 0;
return it->total_dish_count_;
}
// returns +1 or 0 indicating whether a new table was opened
template <typename T>
int increment(const Dish& dish, const T& p0, MT19937* rng) {
DishLocations& loc = dish_locs_[dish];
bool share_table = false;
if (loc.total_dish_count_) {
const T p_empty = T(strength_ + num_tables_ * discount_) * p0;
const T p_share = T(loc.total_dish_count_ - loc.table_counts_.size() * discount_);
share_table = rng->SelectSample(p_empty, p_share);
}
if (share_table) {
double r = rng->next() * (loc.total_dish_count_ - loc.table_counts_.size() * discount_);
for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
ti != loc.table_counts_.end(); ++ti) {
r -= (*ti - discount_);
if (r <= 0.0) {
++(*ti);
break;
}
}
if (r > 0.0) {
std::cerr << "Serious error: r=" << r << std::endl;
Print(&std::cerr);
assert(r <= 0.0);
}
} else {
loc.table_counts_.push_back(1u);
++num_tables_;
}
++loc.total_dish_count_;
++num_customers_;
return (share_table ? 0 : 1);
}
// returns -1 or 0, indicating whether a table was closed
int decrement(const Dish& dish, MT19937* rng) {
DishLocations& loc = dish_locs_[dish];
assert(loc.total_dish_count_);
if (loc.total_dish_count_ == 1) {
dish_locs_.erase(dish);
--num_tables_;
--num_customers_;
return -1;
} else {
int delta = 0;
// sample customer to remove UNIFORMLY. that is, do NOT use the discount
// here. if you do, it will introduce (unwanted) bias!
double r = rng->next() * loc.total_dish_count_;
--loc.total_dish_count_;
for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
ti != loc.table_counts_.end(); ++ti) {
r -= *ti;
if (r <= 0.0) {
if ((--(*ti)) == 0) {
--num_tables_;
delta = -1;
loc.table_counts_.erase(ti);
}
break;
}
}
if (r > 0.0) {
std::cerr << "Serious error: r=" << r << std::endl;
Print(&std::cerr);
assert(r <= 0.0);
}
--num_customers_;
return delta;
}
}
template <typename T>
T prob(const Dish& dish, const T& p0) const {
const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
const T r = T(num_tables_ * discount_ + strength_);
if (it == dish_locs_.end()) {
return r * p0 / T(num_customers_ + strength_);
} else {
return (T(it->second.total_dish_count_ - discount_ * it->second.table_counts_.size()) + r * p0) /
T(num_customers_ + strength_);
}
}
double log_crp_prob() const {
return log_crp_prob(discount_, strength_);
}
// taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
// does not include P_0's
double log_crp_prob(const double& discount, const double& strength) const {
double lp = 0.0;
if (has_discount_prior())
lp = Md::log_beta_density(discount, discount_prior_strength_, discount_prior_beta_);
if (has_strength_prior())
lp += Md::log_gamma_density(strength + discount, strength_prior_shape_, strength_prior_rate_);
assert(lp <= 0.0);
if (num_customers_) {
if (discount > 0.0) {
const double r = lgamma(1.0 - discount);
if (strength)
lp += lgamma(strength) - lgamma(strength / discount);
lp += - lgamma(strength + num_customers_)
+ num_tables_ * log(discount) + lgamma(strength / discount + num_tables_);
assert(std::isfinite(lp));
for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
it != dish_locs_.end(); ++it) {
const DishLocations& cur = it->second;
for (std::list<unsigned>::const_iterator ti = cur.table_counts_.begin(); ti != cur.table_counts_.end(); ++ti) {
lp += lgamma(*ti - discount) - r;
}
}
} else if (!discount) { // discount == 0.0
lp += lgamma(strength) + num_tables_ * log(strength) - lgamma(strength + num_tables_);
assert(std::isfinite(lp));
for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
it != dish_locs_.end(); ++it) {
const DishLocations& cur = it->second;
lp += lgamma(cur.table_counts_.size());
}
} else {
assert(!"discount less than 0 detected!");
}
}
assert(std::isfinite(lp));
return lp;
}
void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
assert(has_discount_prior() || has_strength_prior());
if (num_customers() == 0) return;
DiscountResampler dr(*this);
StrengthResampler sr(*this);
for (int iter = 0; iter < nloop; ++iter) {
if (has_strength_prior()) {
strength_ = slice_sampler1d(sr, strength_, *rng, -discount_ + std::numeric_limits<double>::min(),
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
}
if (has_discount_prior()) {
double min_discount = std::numeric_limits<double>::min();
if (strength_ < 0.0) min_discount -= strength_;
discount_ = slice_sampler1d(dr, discount_, *rng, min_discount,
1.0, 0.0, niterations, 100*niterations);
}
}
strength_ = slice_sampler1d(sr, strength_, *rng, -discount_,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
}
struct DiscountResampler {
DiscountResampler(const CCRP& crp) : crp_(crp) {}
const CCRP& crp_;
double operator()(const double& proposed_discount) const {
return crp_.log_crp_prob(proposed_discount, crp_.strength_);
}
};
struct StrengthResampler {
StrengthResampler(const CCRP& crp) : crp_(crp) {}
const CCRP& crp_;
double operator()(const double& proposed_strength) const {
return crp_.log_crp_prob(crp_.discount_, proposed_strength);
}
};
struct DishLocations {
DishLocations() : total_dish_count_() {}
unsigned total_dish_count_; // customers at all tables with this dish
std::list<unsigned> table_counts_; // list<> gives O(1) deletion and insertion, which we want
// .size() is the number of tables for this dish
};
void Print(std::ostream* out) const {
std::cerr << "PYP(d=" << discount_ << ",c=" << strength_ << ") customers=" << num_customers_ << std::endl;
for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
it != dish_locs_.end(); ++it) {
(*out) << it->first << " (" << it->second.total_dish_count_ << " on " << it->second.table_counts_.size() << " tables): ";
for (typename std::list<unsigned>::const_iterator i = it->second.table_counts_.begin();
i != it->second.table_counts_.end(); ++i) {
(*out) << " " << *i;
}
(*out) << std::endl;
}
}
typedef typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator const_iterator;
const_iterator begin() const {
return dish_locs_.begin();
}
const_iterator end() const {
return dish_locs_.end();
}
unsigned num_tables_;
unsigned num_customers_;
std::tr1::unordered_map<Dish, DishLocations, DishHash> dish_locs_;
double discount_;
double strength_;
// optional beta prior on discount_ (NaN if no prior)
double discount_prior_strength_;
double discount_prior_beta_;
// optional gamma prior on strength_ (NaN if no prior)
double strength_prior_shape_;
double strength_prior_rate_;
};
template <typename T,typename H>
std::ostream& operator<<(std::ostream& o, const CCRP<T,H>& c) {
c.Print(&o);
return o;
}
#endif
|