1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "config.h"
#ifdef HAVE_BOOST_DIGAMMA
#include <boost/math/special_functions/digamma.hpp>
using boost::math::digamma;
#endif
#include "tdict.h"
#include "filelib.h"
#include "trule.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"
using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;
#ifndef HAVE_BOOST_DIGAMMA
#warning Using Mark Johnson's digamma()
double digamma(double x) {
double result = 0, xx, xx2, xx4;
assert(x > 0);
for ( ; x < 7; ++x)
result -= 1/x;
x -= 1.0/2.0;
xx = 1.0/x;
xx2 = xx*xx;
xx4 = xx2*xx2;
result += log(x)+(1./24.)*xx2-(7.0/960.0)*xx4+(31.0/8064.0)*xx4*xx2-(127.0/30720.0)*xx4*xx4;
return result;
}
#endif
void SanityCheck(const vector<double>& w) {
for (int i = 0; i < w.size(); ++i) {
assert(!isnan(w[i]));
}
}
struct FComp {
const vector<double>& w_;
FComp(const vector<double>& w) : w_(w) {}
bool operator()(int a, int b) const {
return w_[a] > w_[b];
}
};
void ShowLargestFeatures(const vector<double>& w) {
vector<int> fnums(w.size() - 1);
for (int i = 1; i < w.size(); ++i)
fnums[i-1] = i;
vector<int>::iterator mid = fnums.begin();
mid += (w.size() > 10 ? 10 : w.size()) - 1;
partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
cerr << "MOST PROBABLE:";
for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
}
cerr << endl;
}
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("output,o",po::value<string>()->default_value("-"),"Output log probs file")
("grammar,g",po::value<vector<string> >()->composing(),"SCFG grammar file(s)")
("optimization_method,m", po::value<string>()->default_value("em"), "Optimization method (em, vb)")
("input_format,f",po::value<string>()->default_value("b64"),"Encoding of the input (b64 or text)");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || !conf->count("grammar")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
// describes a multinomial or multinomial with a prior
// does not contain the parameters- just the list of events
// and any hyperparameters
struct MultinomialInfo {
MultinomialInfo() : alpha(1.0) {}
vector<int> events; // the events that this multinomial generates
double alpha; // hyperparameter for (optional) Dirichlet prior
};
typedef map<WordID, MultinomialInfo> ModelDefinition;
void LoadModelEvents(const po::variables_map& conf, ModelDefinition* pm) {
ModelDefinition& m = *pm;
m.clear();
vector<string> gfiles = conf["grammar"].as<vector<string> >();
for (int i = 0; i < gfiles.size(); ++i) {
ReadFile rf(gfiles[i]);
istream& in = *rf.stream();
int lc = 0;
while(in) {
string line;
getline(in, line);
if (line.empty()) continue;
++lc;
TRule r(line, true);
const SparseVector<double>& f = r.GetFeatureValues();
if (f.num_active() == 0) {
cerr << "[WARNING] no feature found in " << gfiles[i] << ':' << lc << endl;
continue;
}
if (f.num_active() > 1) {
cerr << "[ERROR] more than one feature found in " << gfiles[i] << ':' << lc << endl;
exit(1);
}
SparseVector<double>::const_iterator it = f.begin();
if (it->second != 1.0) {
cerr << "[ERROR] feature with value != 1 found in " << gfiles[i] << ':' << lc << endl;
exit(1);
}
m[r.GetLHS()].events.push_back(it->first);
}
}
for (ModelDefinition::iterator it = m.begin(); it != m.end(); ++it) {
const vector<int>& v = it->second.events;
cerr << "Multinomial [" << TD::Convert(it->first*-1) << "]\n";
if (v.size() < 1000) {
cerr << " generates:";
for (int i = 0; i < v.size(); ++i) {
cerr << " " << FD::Convert(v[i]);
}
cerr << endl;
}
}
}
void Maximize(const ModelDefinition& m, const bool use_vb, vector<double>* counts) {
for (ModelDefinition::const_iterator it = m.begin(); it != m.end(); ++it) {
const MultinomialInfo& mult_info = it->second;
const vector<int>& events = mult_info.events;
cerr << "Multinomial [" << TD::Convert(it->first*-1) << "]";
double tot = 0;
for (int i = 0; i < events.size(); ++i)
tot += (*counts)[events[i]];
cerr << " = " << tot << endl;
assert(tot > 0.0);
double ltot = log(tot);
if (use_vb)
ltot = digamma(tot + events.size() * mult_info.alpha);
for (int i = 0; i < events.size(); ++i) {
if (use_vb) {
(*counts)[events[i]] = digamma((*counts)[events[i]] + mult_info.alpha) - ltot;
} else {
(*counts)[events[i]] = log((*counts)[events[i]]) - ltot;
}
}
if (events.size() < 50) {
for (int i = 0; i < events.size(); ++i) {
cerr << " p(" << FD::Convert(events[i]) << ")=" << exp((*counts)[events[i]]);
}
cerr << endl;
}
}
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const bool use_b64 = conf["input_format"].as<string>() == "b64";
const bool use_vb = conf["optimization_method"].as<string>() == "vb";
if (use_vb)
cerr << "Using variational Bayes, make sure alphas are set\n";
ModelDefinition model_def;
LoadModelEvents(conf, &model_def);
const string s_obj = "**OBJ**";
int num_feats = FD::NumFeats();
cerr << "Number of features: " << num_feats << endl;
vector<double> counts(num_feats, 0);
double logprob = 0;
// 0<TAB>**OBJ**=12.2;Feat1=2.3;Feat2=-0.2;
// 0<TAB>**OBJ**=1.1;Feat1=1.0;
// E-step
while(cin) {
string line;
getline(cin, line);
if (line.empty()) continue;
int feat;
double val;
size_t i = line.find("\t");
assert(i != string::npos);
++i;
if (use_b64) {
SparseVector<double> g;
double obj;
if (!B64::Decode(&obj, &g, &line[i], line.size() - i)) {
cerr << "B64 decoder returned error, skipping!\n";
continue;
}
logprob += obj;
const SparseVector<double>& cg = g;
for (SparseVector<double>::const_iterator it = cg.begin(); it != cg.end(); ++it) {
if (it->first >= num_feats) {
cerr << "Unexpected feature: " << FD::Convert(it->first) << endl;
abort();
}
counts[it->first] += it->second;
}
} else { // text encoding - your counts will not be accurate!
while (i < line.size()) {
size_t start = i;
while (line[i] != '=' && i < line.size()) ++i;
if (i == line.size()) { cerr << "FORMAT ERROR\n"; break; }
string fname = line.substr(start, i - start);
if (fname == s_obj) {
feat = -1;
} else {
feat = FD::Convert(line.substr(start, i - start));
if (feat >= num_feats) {
cerr << "Unexpected feature: " << line.substr(start, i - start) << endl;
abort();
}
}
++i;
start = i;
while (line[i] != ';' && i < line.size()) ++i;
if (i - start == 0) continue;
val = atof(line.substr(start, i - start).c_str());
++i;
if (feat == -1) {
logprob += val;
} else {
counts[feat] += val;
}
}
}
}
cerr << "LOGPROB: " << logprob << endl;
// M-step
Maximize(model_def, use_vb, &counts);
SanityCheck(counts);
ShowLargestFeatures(counts);
Weights weights;
weights.InitFromVector(counts);
weights.WriteToFile(conf["output"].as<string>(), false);
return 0;
}
|