summaryrefslogtreecommitdiff
path: root/training/mpi_flex_optimize.cc
blob: a919720877739e4f0e94791f0ad0acc4aac6ea69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>
#include <cassert>
#include <cmath>

#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "stringlib.h"
#include "verbose.h"
#include "hg.h"
#include "prob.h"
#include "inside_outside.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "optimize.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"
#include "sampler.h"

#ifdef HAVE_MPI
#include <boost/mpi/timer.hpp>
#include <boost/mpi.hpp>
namespace mpi = boost::mpi;
#endif

using namespace std;
namespace po = boost::program_options;

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("cdec_config,c",po::value<string>(),"Decoder configuration file")
        ("weights,w",po::value<string>(),"Initial feature weights")
        ("training_data,d",po::value<string>(),"Training data")
        ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(6), "Number of training instances evaluated per processor in each minibatch")
        ("minibatch_iterations,i", po::value<unsigned>()->default_value(10), "Number of optimization iterations per minibatch")
        ("iterations,I", po::value<unsigned>()->default_value(50), "Number of passes through the training data before termination")
        ("regularization_strength,C", po::value<double>()->default_value(0.2), "Regularization strength")
        ("time_series_strength,T", po::value<double>()->default_value(0.0), "Time series regularization strength")
        ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
        ("lbfgs_memory_buffers,M", po::value<unsigned>()->default_value(10), "Number of memory buffers for LBFGS history");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || !conf->count("training_data") || !conf->count("cdec_config")) {
    cerr << "LBFGS minibatch online optimizer (MPI support "
#if HAVE_MPI
         << "enabled"
#else
         << "not enabled"
#endif
         << ")\n" << dcmdline_options << endl;
    return false;
  }
  return true;
}

void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) {
  ReadFile rf(fname);
  istream& in = *rf.stream();
  string line;
  int id = 0;
  while(in) {
    getline(in, line);
    if (!in) break;
    if (id % size == rank) {
      c->push_back(line);
      order->push_back(id);
    }
    ++id;
  }
}

static const double kMINUS_EPSILON = -1e-6;

struct CopyHGsObserver : public DecoderObserver {
  Hypergraph* hg_;
  Hypergraph* gold_hg_;

  // this can free up some memory
  void RemoveRules(Hypergraph* h) {
    for (unsigned i = 0; i < h->edges_.size(); ++i)
      h->edges_[i].rule_.reset();
  }

  void SetCurrentHypergraphs(Hypergraph* h, Hypergraph* gold_h) {
    hg_ = h;
    gold_hg_ = gold_h;
  }

  virtual void NotifyDecodingStart(const SentenceMetadata&) {
    state = 1;
  }

  // compute model expectations, denominator of objective
  virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
    *hg_ = *hg;
    RemoveRules(hg_);
    assert(state == 1);
    state = 2;
  }

  // compute "empirical" expectations, numerator of objective
  virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) {
    assert(state == 2);
    state = 3;
    *gold_hg_ = *hg;
    RemoveRules(gold_hg_);
  }

  virtual void NotifyDecodingComplete(const SentenceMetadata&) {
    if (state == 3) {
    } else {
      hg_->clear();
      gold_hg_->clear();
    }
  }

  int state;
};

void ReadConfig(const string& ini, istringstream* out) {
  ReadFile rf(ini);
  istream& in = *rf.stream();
  ostringstream os;
  while(in) {
    string line;
    getline(in, line);
    if (!in) continue;
    os << line << endl;
  }
  out->str(os.str());
}

#ifdef HAVE_MPI
namespace boost { namespace mpi {
  template<>
  struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> > 
    : mpl::true_ { };
} } // end namespace boost::mpi
#endif

void AddGrad(const SparseVector<prob_t> x, double s, SparseVector<double>* acc) {
  for (SparseVector<prob_t>::const_iterator it = x.begin(); it != x.end(); ++it)
    acc->add_value(it->first, it->second.as_float() * s);
}

double PNorm(const vector<double>& v, const double p) {
  double acc = 0;
  for (int i = 0; i < v.size(); ++i)
    acc += pow(v[i], p);
  return pow(acc, 1.0 / p);
}

void VV(ostream&os, const vector<double>& v) {
  for (int i = 1; i < v.size(); ++i)
    if (v[i]) os << FD::Convert(i) << "=" << v[i] << " ";
}

double ApplyRegularizationTerms(const double C,
                                const double T,
                                const vector<double>& weights,
                                const vector<double>& prev_weights,
                                vector<double>* g) {
  assert(weights.size() == g->size());
  double reg = 0;
  for (size_t i = 0; i < weights.size(); ++i) {
    const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0);
    const double& w_i = weights[i];
    double& g_i = (*g)[i];
    reg += C * w_i * w_i;
    g_i += 2 * C * w_i;

    reg += T * (w_i - prev_w_i) * (w_i - prev_w_i);
    g_i += 2 * T * (w_i - prev_w_i);
  }
  return reg;
}

int main(int argc, char** argv) {
#ifdef HAVE_MPI
  mpi::environment env(argc, argv);
  mpi::communicator world;
  const int size = world.size(); 
  const int rank = world.rank();
#else
  const int size = 1;
  const int rank = 0;
#endif
  if (size > 1) SetSilent(true);  // turn off verbose decoder output
  register_feature_functions();
  MT19937* rng = NULL;

  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf))
    return 1;

  boost::shared_ptr<BatchOptimizer> o;
  const unsigned lbfgs_memory_buffers = conf["lbfgs_memory_buffers"].as<unsigned>();
  const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
  const unsigned minibatch_iterations = conf["minibatch_iterations"].as<unsigned>();
  const double regularization_strength = conf["regularization_strength"].as<double>();
  const double time_series_strength = conf["time_series_strength"].as<double>();
  const bool use_time_series_reg = time_series_strength > 0.0;
  const unsigned max_iteration = conf["iterations"].as<unsigned>();

  vector<string> corpus;
  vector<int> ids;
  ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
  assert(corpus.size() > 0);

  if (size_per_proc > corpus.size()) {
    cerr << "Minibatch size (per processor) must be smaller or equal to the local corpus size!\n";
    return 1;
  }

  // initialize decoder (loads hash functions if necessary)
  istringstream ins;
  ReadConfig(conf["cdec_config"].as<string>(), &ins);
  Decoder decoder(&ins);

  // load initial weights
  vector<weight_t> prev_weights;
  if (conf.count("weights"))
    Weights::InitFromFile(conf["weights"].as<string>(), &prev_weights);

  if (conf.count("random_seed"))
    rng = new MT19937(conf["random_seed"].as<uint32_t>());
  else
    rng = new MT19937;

  size_t total_corpus_size = 0;
#ifdef HAVE_MPI
  reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0);
#else
  total_corpus_size = corpus.size();
#endif

  if (rank == 0)
    cerr << "Total corpus size: " << total_corpus_size << endl;

  CopyHGsObserver observer;

  int write_weights_every_ith = 100; // TODO configure
  int titer = -1;

  vector<weight_t>& cur_weights = decoder.CurrentWeightVector();
  if (use_time_series_reg) {
    cur_weights = prev_weights;
  } else {
    cur_weights.swap(prev_weights);
    prev_weights.clear();
  }

  int iter = -1;
  bool converged = false;
  vector<double> gg;
  while (!converged) {
#ifdef HAVE_MPI
    mpi::timer timer;
#endif
    ++iter; ++titer;
    if (rank == 0) {
      converged = (iter == max_iteration);
        string fname = "weights.cur.gz";
        if (iter % write_weights_every_ith == 0) {
          ostringstream o; o << "weights.epoch_" << iter << ".gz";
          fname = o.str();
        }
        if (converged) { fname = "weights.final.gz"; }
        ostringstream vv;
        vv << "total iter=" << titer << " (of current config iter=" << iter << ")  minibatch=" << size_per_proc << " sentences/proc x " << size << " procs.   num_feats=" << FD::NumFeats() << "   passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size()));
        const string svv = vv.str();
        Weights::WriteToFile(fname, cur_weights, true, &svv);
      }

      vector<Hypergraph> hgs(size_per_proc);
      vector<Hypergraph> gold_hgs(size_per_proc);
      for (int i = 0; i < size_per_proc; ++i) {
        int ei = corpus.size() * rng->next();
        int id = ids[ei];
        observer.SetCurrentHypergraphs(&hgs[i], &gold_hgs[i]);
        decoder.SetId(id);
        decoder.Decode(corpus[ei], &observer);
      }

      SparseVector<double> local_grad, g;
      double local_obj = 0;
      o.reset();
      for (unsigned mi = 0; mi < minibatch_iterations; ++mi) {
        local_grad.clear();
        g.clear();
        local_obj = 0;

        for (unsigned i = 0; i < size_per_proc; ++i) {
          Hypergraph& hg = hgs[i];
          Hypergraph& hg_gold = gold_hgs[i];
          if (hg.edges_.size() < 2) continue;

          hg.Reweight(cur_weights);
          hg_gold.Reweight(cur_weights);
          SparseVector<prob_t> model_exp, gold_exp;
          const prob_t z = InsideOutside<prob_t,
                                         EdgeProb,
                                         SparseVector<prob_t>,
                                         EdgeFeaturesAndProbWeightFunction>(hg, &model_exp);
          local_obj += log(z);
          model_exp /= z;
          AddGrad(model_exp, 1.0, &local_grad);
          model_exp.clear();

          const prob_t goldz = InsideOutside<prob_t,
                                         EdgeProb,
                                         SparseVector<prob_t>,
                                         EdgeFeaturesAndProbWeightFunction>(hg_gold, &gold_exp);
          local_obj -= log(goldz);

          if (log(z) - log(goldz) < kMINUS_EPSILON) {
            cerr << "DIFF. ERR! log_model_z < log_gold_z: " << log(z) << " " << log(goldz) << endl;
            return 1;
          }

          gold_exp /= goldz;
          AddGrad(gold_exp, -1.0, &local_grad);
        }

        double obj = 0;
#ifdef HAVE_MPI
        reduce(world, local_obj, obj, std::plus<double>(), 0);
        reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0);
#else
        obj = local_obj;
        g.swap(local_grad);
#endif
        local_grad.clear();
        if (rank == 0) {
          // g /= (size_per_proc * size);
          if (!o)
            o.reset(new LBFGSOptimizer(FD::NumFeats(), lbfgs_memory_buffers));
          gg.clear();
          gg.resize(FD::NumFeats());
          if (gg.size() != cur_weights.size()) { cur_weights.resize(gg.size()); }
          for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it)
            if (it->first) { gg[it->first] = it->second; }
          g.clear();
          double r = ApplyRegularizationTerms(regularization_strength,
                                time_series_strength, // * (iter == 0 ? 0.0 : 1.0),
                                cur_weights,
                                prev_weights,
                                &gg);
          obj += r;
          if (mi == 0 || mi == (minibatch_iterations - 1)) {
            if (!mi) cerr << iter << ' '; else cerr << ' ';
            cerr << "OBJ=" << obj << " (REG=" << r << ")" << " |g|=" << PNorm(gg, 2) << " |w|=" << PNorm(cur_weights, 2); 
            if (mi > 0) cerr << endl << flush; else cerr << ' ';
          } else { cerr << '.' << flush; }
          // cerr << "w = "; VV(cerr, cur_weights); cerr << endl;
          // cerr << "g = "; VV(cerr, gg); cerr << endl;
          o->Optimize(obj, gg, &cur_weights);
        }
#ifdef HAVE_MPI
        broadcast(world, cur_weights, 0);
        broadcast(world, converged, 0);
        world.barrier();
#endif
    }
    prev_weights = cur_weights;
  }
  return 0;
}