summaryrefslogtreecommitdiff
path: root/realtime/rt/rt.py
blob: 1e78e188d08d2d614b3db5883f877737c67f9b7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python

import argparse
import collections
import logging
import os
import shutil
import sys
import subprocess
import tempfile
import threading
import time

import cdec
import aligner
import decoder
import util

# Dummy input token that is unlikely to appear in normalized data (but no fatal errors if it does)
LIKELY_OOV = '(OOV)'

class RealtimeDecoder:
    '''Do not use directly unless you know what you're doing.  Use RealtimeTranslator.'''

    def __init__(self, configdir, tmpdir):

        cdec_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

        self.tmp = tmpdir
        os.mkdir(self.tmp)

        # HPYPLM reference stream
        ref_fifo_file = os.path.join(self.tmp, 'ref.fifo')
        os.mkfifo(ref_fifo_file)
        self.ref_fifo = open(ref_fifo_file, 'w+')
        # Start with empty line (do not learn prior to first input)
        self.ref_fifo.write('\n')
        self.ref_fifo.flush()

        # Decoder
        decoder_config = [[f.strip() for f in line.split('=')] for line in open(os.path.join(configdir, 'cdec.ini'))]
        util.cdec_ini_for_realtime(decoder_config, os.path.abspath(configdir), ref_fifo_file)
        decoder_config_file = os.path.join(self.tmp, 'cdec.ini')
        with open(decoder_config_file, 'w') as output:
            for (k, v) in decoder_config:
                output.write('{}={}\n'.format(k, v))
        decoder_weights = os.path.join(configdir, 'weights.final')
        self.decoder = decoder.MIRADecoder(decoder_config_file, decoder_weights)

    def close(self, force=False):
        logging.info('Closing decoder and removing {}'.format(self.tmp))
        self.decoder.close(force)
        self.ref_fifo.close()
        shutil.rmtree(self.tmp)

class RealtimeTranslator:
    '''Main entry point into API: serves translations to any number of concurrent users'''

    def __init__(self, configdir, tmpdir='/tmp', cache_size=5, norm=False, state=None):

        # TODO: save/load
        self.commands = {'LEARN': self.learn, 'SAVE': self.save_state, 'LOAD': self.load_state}

        cdec_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

        ### Single instance for all contexts

        self.config = configdir
        # Temporary work dir
        self.tmp = tempfile.mkdtemp(dir=tmpdir, prefix='realtime.')
        logging.info('Using temp dir {}'.format(self.tmp))

        # Normalization
        self.norm = norm
        if self.norm:
            self.tokenizer = util.popen_io([os.path.join(cdec_root, 'corpus', 'tokenize-anything.sh'), '-u'])
            self.tokenizer_lock = util.FIFOLock()
            self.detokenizer = util.popen_io([os.path.join(cdec_root, 'corpus', 'untok.pl')])
            self.detokenizer_lock = util.FIFOLock()

        # Word aligner
        fwd_params = os.path.join(configdir, 'a.fwd_params')
        fwd_err = os.path.join(configdir, 'a.fwd_err')
        rev_params = os.path.join(configdir, 'a.rev_params')
        rev_err = os.path.join(configdir, 'a.rev_err')
        self.aligner = aligner.ForceAligner(fwd_params, fwd_err, rev_params, rev_err)

        # Grammar extractor
        sa_config = cdec.configobj.ConfigObj(os.path.join(configdir, 'sa.ini'), unrepr=True)
        sa_config.filename = os.path.join(self.tmp, 'sa.ini')
        util.sa_ini_for_realtime(sa_config, os.path.abspath(configdir))
        sa_config.write()
        self.extractor = cdec.sa.GrammarExtractor(sa_config.filename, online=True)
        self.cache_size = cache_size

        ### One instance per context

        self.ctx_names = set()
        # All context-dependent operations are atomic
        self.ctx_locks = collections.defaultdict(util.FIFOLock)
        # ctx -> list of (source, target, alignment)
        self.ctx_data = {}

        # Grammar extractor is not threadsafe
        self.extractor_lock = util.FIFOLock()
        # ctx -> deque of file
        self.grammar_files = {}
        # ctx -> dict of {sentence: file}
        self.grammar_dict = {}

        self.decoders = {}

        # TODO: state
        # Load state if given
        if state:
            with open(state) as input:
                self.load_state(input)

    def __enter__(self):
        return self

    def __exit__(self, ex_type, ex_value, ex_traceback):
        self.close(ex_type is KeyboardInterrupt)

    def close(self, force=False):
        '''Cleanup'''
        if force:
            logging.info('Forced shutdown: stopping immediately')
        for ctx_name in list(self.ctx_names):
            self.drop_ctx(ctx_name, force)
        logging.info('Closing processes')
        self.aligner.close()
        if self.norm:
            self.tokenizer.stdin.close()
            self.detokenizer.stdin.close()
        logging.info('Deleting {}'.format(self.tmp))
        shutil.rmtree(self.tmp)

    def lazy_ctx(self, ctx_name):
        '''Initialize a context (inc starting a new decoder) if needed'''
        self.ctx_locks[ctx_name].acquire()
        if ctx_name in self.ctx_names:
            self.ctx_locks[ctx_name].release()
            return
        logging.info('New context: {}'.format(ctx_name))
        self.ctx_names.add(ctx_name)
        self.ctx_data[ctx_name] = []
        self.grammar_files[ctx_name] = collections.deque()
        self.grammar_dict[ctx_name] = {}
        tmpdir = os.path.join(self.tmp, 'decoder.{}'.format(ctx_name))
        self.decoders[ctx_name] = RealtimeDecoder(self.config, tmpdir)
        self.ctx_locks[ctx_name].release()

    def drop_ctx(self, ctx_name, force=False):
        '''Delete a context (inc stopping the decoder)'''
        if not force:
            lock = self.ctx_locks[ctx_name]
            lock.acquire()
        logging.info('Dropping context: {}'.format(ctx_name))
        self.ctx_names.remove(ctx_name)
        self.ctx_data.pop(ctx_name)
        self.extractor.drop_ctx(ctx_name)
        self.grammar_files.pop(ctx_name)
        self.grammar_dict.pop(ctx_name)
        self.decoders.pop(ctx_name).close(force)
        self.ctx_locks.pop(ctx_name)
        if not force:
            lock.release()
        
    def grammar(self, sentence, ctx_name=None):
        '''Extract a sentence-level grammar on demand (or return cached)'''
        self.lazy_ctx(ctx_name)
        lock = self.ctx_locks[ctx_name]
        lock.acquire()
        grammar_dict = self.grammar_dict[ctx_name]
        grammar_file = grammar_dict.get(sentence, None)
        # Cache hit
        if grammar_file:
            logging.info('Grammar cache hit: {}'.format(grammar_file))
            lock.release()
            return grammar_file
        # Extract and cache
        (fid, grammar_file) = tempfile.mkstemp(dir=self.decoders[ctx_name].tmp, prefix='grammar.')
        os.close(fid)
        with open(grammar_file, 'w') as output:
            self.extractor_lock.acquire()
            for rule in self.extractor.grammar(sentence, ctx_name):
                output.write('{}\n'.format(str(rule)))
            self.extractor_lock.release()
        grammar_files = self.grammar_files[ctx_name]
        if len(grammar_files) == self.cache_size:
            rm_sent = grammar_files.popleft()
            # If not already removed by learn method
            if rm_sent in grammar_dict:
                rm_grammar = grammar_dict.pop(rm_sent)
                os.remove(rm_grammar)
        grammar_files.append(sentence)
        grammar_dict[sentence] = grammar_file
        lock.release()
        return grammar_file
        
    def decode(self, sentence, ctx_name=None):
        '''Decode a sentence (inc extracting a grammar if needed)'''
        self.lazy_ctx(ctx_name)
        # Empty in, empty out
        if sentence.strip() == '':
            return ''
        if self.norm:
            sentence = self.tokenize(sentence)
            logging.info('Normalized input: {}'.format(sentence))
        # grammar method is threadsafe 
        grammar_file = self.grammar(sentence, ctx_name)
        decoder = self.decoders[ctx_name]
        lock = self.ctx_locks[ctx_name]
        lock.acquire()
        start_time = time.time()
        hyp = decoder.decoder.decode(sentence, grammar_file)
        stop_time = time.time()
        logging.info('Translation time: {} seconds'.format(stop_time - start_time))
        # Empty reference: HPYPLM does not learn prior to next translation
        decoder.ref_fifo.write('\n')
        decoder.ref_fifo.flush()
        lock.release()
        if self.norm:
            logging.info('Normalized translation: {}'.format(hyp))
            hyp = self.detokenize(hyp)
        return hyp

    def tokenize(self, line):
        self.tokenizer_lock.acquire()
        self.tokenizer.stdin.write('{}\n'.format(line))
        tok_line = self.tokenizer.stdout.readline().strip()
        self.tokenizer_lock.release()
        return tok_line

    def detokenize(self, line):
        self.detokenizer_lock.acquire()
        self.detokenizer.stdin.write('{}\n'.format(line))
        detok_line = self.detokenizer.stdout.readline().strip()
        self.detokenizer_lock.release()
        return detok_line

    # TODO
    def command_line(self, line, ctx_name=None):
        args = [f.strip() for f in line.split('|||')]
        try:
            if len(args) == 2 and not args[1]:
                self.commands[args[0]](ctx_name)
            else:
                self.commands[args[0]](*args[1:], ctx_name=ctx_name)
        except:
            logging.info('Command error: {}'.format(' ||| '.join(args)))
        
    def learn(self, source, target, ctx_name=None):
        self.lazy_ctx(ctx_name)
        if '' in (source.strip(), target.strip()):
            logging.info('Error empty source or target: {} ||| {}'.format(source, target))
            return
        if self.norm:
            source = self.tokenize(source)
            target = self.tokenize(target)
        # Align instance (threadsafe)
        alignment = self.aligner.align(source, target)
        # grammar method is threadsafe
        grammar_file = self.grammar(source, ctx_name)
        lock = self.ctx_locks[ctx_name]
        lock.acquire()
        # MIRA update before adding data to grammar extractor
        decoder = self.decoders[ctx_name]
        mira_log = decoder.decoder.update(source, grammar_file, target)
        logging.info('MIRA: {}'.format(mira_log))
        # Add to HPYPLM by writing to fifo (read on next translation)
        logging.info('Adding to HPYPLM: {}'.format(target))
        decoder.ref_fifo.write('{}\n'.format(target))
        decoder.ref_fifo.flush()
        # Store incremental data for save/load
        self.ctx_data[ctx_name].append((source, target, alignment))
        # Add aligned sentence pair to grammar extractor
        logging.info('Adding to bitext: {} ||| {} ||| {}'.format(source, target, alignment))
        self.extractor.add_instance(source, target, alignment, ctx_name)
        # Clear (old) cached grammar
        rm_grammar = self.grammar_dict[ctx_name].pop(source)
        os.remove(rm_grammar)
        lock.release()

    def save_state(self, filename=None, ctx_name=None):
        self.lazy_ctx(ctx_name)
        out = open(filename, 'w') if filename else sys.stdout
        lock = self.ctx_locks[ctx_name]
        lock.acquire()
        ctx_data = self.ctx_data[ctx_name]
        logging.info('Saving state with {} sentences'.format(len(self.ctx_data)))
        out.write('{}\n'.format(self.decoders[ctx_name].decoder.get_weights()))
        for (source, target, alignment) in ctx_data:
            out.write('{} ||| {} ||| {}\n'.format(source, target, alignment))
        lock.release()
        out.write('EOF\n')
        if filename:
            out.close()

    def load_state(self, input=sys.stdin, ctx_name=None):
        self.lazy_ctx(ctx_name)
        lock = self.ctx_locks[ctx_name]
        lock.acquire() 
        ctx_data = self.ctx_data[ctx_name]
        decoder = self.decoders[ctx_name]
       # Non-initial load error
        if ctx_data:
            logging.info('Error: Incremental data has already been added to decoder.')
            logging.info('       State can only be loaded by a freshly started decoder.')
            return
        # MIRA weights
        line = input.readline().strip()
        decoder.decoder.set_weights(line)
        logging.info('Loading state...')
        start_time = time.time()
        # Lines source ||| target ||| alignment
        while True:
            line = input.readline().strip()
            if line == 'EOF':
                break
            (source, target, alignment) = line.split(' ||| ')
            ctx_data.append((source, target, alignment))
            # Extractor
            self.extractor.add_instance(source, target, alignment, ctx_name)
            # HPYPLM
            hyp = decoder.decoder.decode(LIKELY_OOV)
            self.ref_fifo.write('{}\n'.format(target))
            self.ref_fifo.flush()
        stop_time = time.time()
        logging.info('Loaded state with {} sentences in {} seconds'.format(len(ctx_data), stop_time - start_time))
        lock.release()