1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
# precomputes a set of collocations by advancing over the text.
# warning: nasty C code
from libc.stdio cimport FILE, fopen, fread, fwrite, fclose
from libc.stdlib cimport malloc, realloc, free
from libc.string cimport memset, memcpy
cdef struct _Trie_Node # forward decl
cdef struct _Trie_Edge:
int val
_Trie_Node* node
_Trie_Edge* bigger
_Trie_Edge* smaller
cdef struct _Trie_Node:
_Trie_Edge* root
int* arr
int arr_len
cdef _Trie_Node* new_trie_node():
cdef _Trie_Node* node
node = <_Trie_Node*> malloc(sizeof(_Trie_Node))
node.root = NULL
node.arr_len = 0
node.arr = <int*> malloc(sizeof(0*sizeof(int)))
return node
cdef _Trie_Edge* new_trie_edge(int val):
cdef _Trie_Edge* edge
edge = <_Trie_Edge*> malloc(sizeof(_Trie_Edge))
edge.node = new_trie_node()
edge.bigger = NULL
edge.smaller = NULL
edge.val = val
return edge
cdef free_trie_node(_Trie_Node* node):
if node != NULL:
free_trie_edge(node.root)
free(node.arr)
cdef free_trie_edge(_Trie_Edge* edge):
if edge != NULL:
free_trie_node(edge.node)
free_trie_edge(edge.bigger)
free_trie_edge(edge.smaller)
cdef _Trie_Node* trie_find(_Trie_Node* node, int val):
cdef _Trie_Edge* cur
cur = node.root
while cur != NULL and cur.val != val:
if val > cur.val:
cur = cur.bigger
elif val < cur.val:
cur = cur.smaller
if cur == NULL:
return NULL
else:
return cur.node
cdef trie_node_data_append(_Trie_Node* node, int val):
cdef int new_len
new_len = node.arr_len + 1
node.arr = <int*> realloc(node.arr, new_len*sizeof(int))
node.arr[node.arr_len] = val
node.arr_len = new_len
cdef trie_node_data_extend(_Trie_Node* node, int* vals, int num_vals):
cdef int new_len
new_len = node.arr_len + num_vals
node.arr = <int*> realloc(node.arr, new_len*sizeof(int))
memcpy(node.arr + node.arr_len, vals, num_vals*sizeof(int))
node.arr_len = new_len
cdef _Trie_Node* trie_insert(_Trie_Node* node, int val):
cdef _Trie_Edge** cur
cur = &node.root
while cur[0] != NULL and cur[0].val != val:
if val > cur[0].val:
cur = &cur[0].bigger
elif val < cur[0].val:
cur = &cur[0].smaller
if cur[0] == NULL:
cur[0] = new_trie_edge(val)
return cur[0].node
cdef trie_node_to_map(_Trie_Node* node, result, prefix, int include_zeros):
cdef IntList arr
if include_zeros or node.arr_len > 0:
arr = IntList()
free(arr.arr)
arr.arr = <int*> malloc(node.arr_len * sizeof(int))
memcpy(arr.arr, node.arr, node.arr_len * sizeof(int))
arr.len = node.arr_len
arr.size = node.arr_len
result[prefix] = arr
trie_edge_to_map(node.root, result, prefix, include_zeros)
cdef trie_edge_to_map(_Trie_Edge* edge, result, prefix, int include_zeros):
if edge != NULL:
trie_edge_to_map(edge.smaller, result, prefix, include_zeros)
trie_edge_to_map(edge.bigger, result, prefix, include_zeros)
prefix = prefix + (edge.val,)
trie_node_to_map(edge.node, result, prefix, include_zeros)
cdef class TrieMap:
cdef _Trie_Node** root
cdef int V
def __cinit__(self, int alphabet_size):
self.V = alphabet_size
self.root = <_Trie_Node**> malloc(self.V * sizeof(_Trie_Node*))
memset(self.root, 0, self.V * sizeof(_Trie_Node*))
def __dealloc__(self):
cdef int i
for i from 0 <= i < self.V:
if self.root[i] != NULL:
free_trie_node(self.root[i])
free(self.root)
def insert(self, pattern):
cdef int* p
cdef int i, l
l = len(pattern)
p = <int*> malloc(l*sizeof(int))
for i from 0 <= i < l:
p[i] = pattern[i]
self._insert(p,l)
free(p)
cdef _Trie_Node* _insert(self, int* pattern, int pattern_len):
cdef int i
cdef _Trie_Node* node
if self.root[pattern[0]] == NULL:
self.root[pattern[0]] = new_trie_node()
node = self.root[pattern[0]]
for i from 1 <= i < pattern_len:
node = trie_insert(node, pattern[i])
return node
def contains(self, pattern):
cdef int* p
cdef int i, l
cdef _Trie_Node* node
l = len(pattern)
p = <int*> malloc(l*sizeof(int))
for i from 0 <= i < l:
p[i] = pattern[i]
node = self._contains(p,l)
free(p)
if node == NULL:
return False
else:
return True
cdef _Trie_Node* _contains(self, int* pattern, int pattern_len):
cdef int i
cdef _Trie_Node* node
node = self.root[pattern[0]]
i = 1
while node != NULL and i < pattern_len:
node = trie_find(node, pattern[i])
i = i+1
return node
def toMap(self, flag):
cdef int i, include_zeros
if flag:
include_zeros=1
else:
include_zeros=0
result = {}
for i from 0 <= i < self.V:
if self.root[i] != NULL:
trie_node_to_map(self.root[i], result, (i,), include_zeros)
return result
cdef class Precomputation:
cdef int precompute_rank
cdef int precompute_secondary_rank
cdef int max_length
cdef int max_nonterminals
cdef int train_max_initial_size
cdef int train_min_gap_size
cdef precomputed_index
cdef precomputed_collocations
def __cinit__(self, fsarray=None, from_stats=None, from_binary=None, mmaped=False,
precompute_rank=1000, precompute_secondary_rank=20,
max_length=5, max_nonterminals=2,
train_max_initial_size=10, train_min_gap_size=2):
self.precompute_rank = precompute_rank
self.precompute_secondary_rank = precompute_secondary_rank
self.max_length = max_length
self.max_nonterminals = max_nonterminals
self.train_max_initial_size = train_max_initial_size
self.train_min_gap_size = train_min_gap_size
if from_binary:
if mmaped:
self.read_mmaped(MemoryMap(from_binary))
else:
self.read_binary(from_binary)
elif from_stats:
self.precompute(from_stats, fsarray)
def read_binary(self, bytes filename):
cdef FILE* f
f = fopen(filename, "r")
fread(&(self.precompute_rank), sizeof(int), 1, f)
fread(&(self.precompute_secondary_rank), sizeof(int), 1, f)
fread(&(self.max_length), sizeof(int), 1, f)
fread(&(self.max_nonterminals), sizeof(int), 1, f)
fread(&(self.train_max_initial_size), sizeof(int), 1, f)
fread(&(self.train_min_gap_size), sizeof(int), 1, f)
self.precomputed_index = self.read_map(f)
self.precomputed_collocations = self.read_map(f)
fclose(f)
def read_mmaped(self, MemoryMap buf):
self.precompute_rank = buf.read_int()
self.precompute_secondary_rank = buf.read_int()
self.max_length = buf.read_int()
self.max_nonterminals = buf.read_int()
self.train_max_initial_size = buf.read_int()
self.train_min_gap_size = buf.read_int()
self.precomputed_index = self.read_mmaped_map(buf)
self.precomputed_collocations = self.read_mmaped_map(buf)
def write_binary(self, bytes filename):
cdef FILE* f
f = fopen(filename, "w")
fwrite(&(self.precompute_rank), sizeof(int), 1, f)
fwrite(&(self.precompute_secondary_rank), sizeof(int), 1, f)
fwrite(&(self.max_length), sizeof(int), 1, f)
fwrite(&(self.max_nonterminals), sizeof(int), 1, f)
fwrite(&(self.train_max_initial_size), sizeof(int), 1, f)
fwrite(&(self.train_min_gap_size), sizeof(int), 1, f)
self.write_map(self.precomputed_index, f)
self.write_map(self.precomputed_collocations, f)
fclose(f)
cdef write_map(self, m, FILE* f):
cdef int i, N
cdef IntList arr
N = len(m)
fwrite(&(N), sizeof(int), 1, f)
for pattern, val in m.iteritems():
N = len(pattern)
fwrite(&(N), sizeof(int), 1, f)
for word_id in pattern:
i = word_id
fwrite(&(i), sizeof(int), 1, f)
arr = val
arr.write_handle(f)
cdef read_map(self, FILE* f):
cdef int i, j, k, word_id, N
cdef IntList arr
m = {}
fread(&(N), sizeof(int), 1, f)
for j from 0 <= j < N:
fread(&(i), sizeof(int), 1, f)
key = ()
for k from 0 <= k < i:
fread(&(word_id), sizeof(int), 1, f)
key = key + (word_id,)
arr = IntList()
arr.read_handle(f)
m[key] = arr
return m
cdef read_mmaped_map(self, MemoryMap buf):
cdef int i, j, k, word_id, N
cdef IntList arr
m = {}
N = buf.read_int()
for j in range(N):
key_size = buf.read_int()
key = []
for k in range(key_size):
key.append(buf.read_int())
arr = IntList()
arr.read_mmaped(buf)
m[tuple(key)] = arr
return m
def precompute(self, stats, SuffixArray sarray):
cdef int i, l, N, max_pattern_len, i1, l1, i2, l2, i3, l3, ptr1, ptr2, ptr3, is_super, sent_count, max_rank
cdef DataArray darray = sarray.darray
cdef IntList data, queue, cost_by_rank, count_by_rank
cdef TrieMap frequent_patterns, super_frequent_patterns, collocations
cdef _Trie_Node* node
data = darray.data
frequent_patterns = TrieMap(len(darray.voc.id2word))
super_frequent_patterns = TrieMap(len(darray.voc.id2word))
collocations = TrieMap(len(darray.voc.id2word))
I_set = set()
J_set = set()
J2_set = set()
IJ_set = set()
pattern_rank = {}
logger.info("Precomputing frequent intersections")
cdef float start_time = monitor_cpu()
max_pattern_len = 0
for rank, (_, _, phrase) in enumerate(stats):
if rank >= self.precompute_rank:
break
max_pattern_len = max(max_pattern_len, len(phrase))
frequent_patterns.insert(phrase)
I_set.add(phrase)
pattern_rank[phrase] = rank
if rank < self.precompute_secondary_rank:
super_frequent_patterns.insert(phrase)
J_set.add(phrase)
queue = IntList(increment=1000)
logger.info(" Computing inverted indexes...")
N = len(data)
for i from 0 <= i < N:
sa_word_id = data.arr[i]
if sa_word_id == 1:
queue._append(-1)
else:
for l from 1 <= l <= max_pattern_len:
node = frequent_patterns._contains(data.arr+i, l)
if node == NULL:
break
queue._append(i)
queue._append(l)
trie_node_data_append(node, i)
logger.info(" Computing collocations...")
N = len(queue)
ptr1 = 0
sent_count = 0
while ptr1 < N: # main loop
i1 = queue.arr[ptr1]
if i1 > -1:
l1 = queue.arr[ptr1+1]
ptr2 = ptr1 + 2
while ptr2 < N:
i2 = queue.arr[ptr2]
if i2 == -1 or i2 - i1 >= self.train_max_initial_size:
break
l2 = queue.arr[ptr2+1]
if (i2 - i1 - l1 >= self.train_min_gap_size and
i2 + l2 - i1 <= self.train_max_initial_size and
l1+l2+1 <= self.max_length):
node = collocations._insert(data.arr+i1, l1)
node = trie_insert(node, -1)
for i from i2 <= i < i2+l2:
node = trie_insert(node, data.arr[i])
trie_node_data_append(node, i1)
trie_node_data_append(node, i2)
if super_frequent_patterns._contains(data.arr+i2, l2) != NULL:
if super_frequent_patterns._contains(data.arr+i1, l1) != NULL:
is_super = 1
else:
is_super = 0
ptr3 = ptr2 + 2
while ptr3 < N:
i3 = queue.arr[ptr3]
if i3 == -1 or i3 - i1 >= self.train_max_initial_size:
break
l3 = queue.arr[ptr3+1]
if (i3 - i2 - l2 >= self.train_min_gap_size and
i3 + l3 - i1 <= self.train_max_initial_size and
l1+l2+l3+2 <= self.max_length):
if is_super or super_frequent_patterns._contains(data.arr+i3, l3) != NULL:
node = collocations._insert(data.arr+i1, l1)
node = trie_insert(node, -1)
for i from i2 <= i < i2+l2:
node = trie_insert(node, data.arr[i])
node = trie_insert(node, -1)
for i from i3 <= i < i3+l3:
node = trie_insert(node, data.arr[i])
trie_node_data_append(node, i1)
trie_node_data_append(node, i2)
trie_node_data_append(node, i3)
ptr3 = ptr3 + 2
ptr2 = ptr2 + 2
ptr1 = ptr1 + 2
else:
sent_count = sent_count + 1
if sent_count % 10000 == 0:
logger.debug(" %d sentences", sent_count)
ptr1 = ptr1 + 1
self.precomputed_collocations = collocations.toMap(False)
self.precomputed_index = frequent_patterns.toMap(True)
x = 0
for pattern1 in J_set:
for pattern2 in J_set:
if len(pattern1) + len(pattern2) + 1 < self.max_length:
combined_pattern = pattern1 + (-1,) + pattern2
J2_set.add(combined_pattern)
for pattern1 in I_set:
for pattern2 in I_set:
x = x+1
if len(pattern1) + len(pattern2) + 1 <= self.max_length:
combined_pattern = pattern1 + (-1,) + pattern2
IJ_set.add(combined_pattern)
for pattern1 in I_set:
for pattern2 in J2_set:
x = x+2
if len(pattern1) + len(pattern2) + 1<= self.max_length:
combined_pattern = pattern1 + (-1,) + pattern2
IJ_set.add(combined_pattern)
combined_pattern = pattern2 + (-1,) + pattern1
IJ_set.add(combined_pattern)
N = len(pattern_rank)
cost_by_rank = IntList(initial_len=N)
count_by_rank = IntList(initial_len=N)
for pattern, arr in self.precomputed_collocations.iteritems():
if pattern not in IJ_set:
s = ""
for word_id in pattern:
if word_id == -1:
s = s + "X "
else:
s = s + darray.voc.id2word[word_id] + " "
logger.warn("ERROR: unexpected pattern %s in set of precomputed collocations", s)
else:
chunk = ()
max_rank = 0
arity = 0
for word_id in pattern:
if word_id == -1:
max_rank = max(max_rank, pattern_rank[chunk])
arity = arity + 1
chunk = ()
else:
chunk = chunk + (word_id,)
max_rank = max(max_rank, pattern_rank[chunk])
cost_by_rank.arr[max_rank] = cost_by_rank.arr[max_rank] + (4*len(arr))
count_by_rank.arr[max_rank] = count_by_rank.arr[max_rank] + (len(arr)/(arity+1))
cumul_cost = 0
cumul_count = 0
for i from 0 <= i < N:
cumul_cost = cumul_cost + cost_by_rank.arr[i]
cumul_count = cumul_count + count_by_rank.arr[i]
logger.debug("RANK %d\tCOUNT, COST: %d %d\tCUMUL: %d, %d", i, count_by_rank.arr[i], cost_by_rank.arr[i], cumul_count, cumul_cost)
num_found_patterns = len(self.precomputed_collocations)
for pattern in IJ_set:
if pattern not in self.precomputed_collocations:
self.precomputed_collocations[pattern] = IntList()
cdef float stop_time = monitor_cpu()
logger.info("Precomputed collocations for %d patterns out of %d possible (upper bound %d)", num_found_patterns, len(self.precomputed_collocations), x)
logger.info("Precomputed inverted index for %d patterns ", len(self.precomputed_index))
logger.info("Precomputation took %f seconds", (stop_time - start_time))
|