1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#include <cstdlib>
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "weights.h"
#include "sparse_vector.h"
#include "optimize.h"
using namespace std;
namespace po = boost::program_options;
// since this is a ranking model, there should be equal numbers of
// positive and negative examples so the bias should be 0
static const double MAX_BIAS = 1e-10;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("weights,w", po::value<string>(), "Weights from previous iteration (used as initialization and interpolation")
("interpolation,p",po::value<double>()->default_value(0.9), "Output weights are p*w + (1-p)*w_prev")
("memory_buffers,m",po::value<unsigned>()->default_value(200), "Number of memory buffers (LBFGS)")
("sigma_squared,s",po::value<double>()->default_value(0.5), "Sigma squared for Gaussian prior")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
string line;
vector<pair<bool, SparseVector<double> > > training;
int lc = 0;
bool flag = false;
SparseVector<double> old_weights;
const double psi = conf["interpolation"].as<double>();
if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; }
if (conf.count("weights")) {
Weights w;
w.InitFromFile(conf["weights"].as<string>());
w.InitSparseVector(&old_weights);
}
while(getline(cin, line)) {
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
if (line.empty()) continue;
const size_t ks = line.find("\t");
assert(string::npos != ks);
assert(ks == 1);
const bool y = line[0] == '1';
SparseVector<double> x;
size_t last_start = ks + 1;
size_t last_comma = string::npos;
size_t cur = last_start;
while(cur <= line.size()) {
if (line[cur] == ' ' || cur == line.size()) {
if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
exit(1);
}
const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
if (cur < line.size()) line[cur] = 0;
const double val = strtod(&line[last_comma + 1], NULL);
x.set_value(fid, val);
last_comma = string::npos;
last_start = cur+1;
} else {
if (line[cur] == '=')
last_comma = cur;
}
++cur;
}
training.push_back(make_pair(y, x));
}
if (flag) cerr << endl;
cerr << "Number of features: " << FD::NumFeats() << endl;
vector<double> x(FD::NumFeats(), 0.0); // x[0] is bias
for (SparseVector<double>::const_iterator it = old_weights.begin();
it != old_weights.end(); ++it)
x[it->first] = it->second;
vector<double> vg(FD::NumFeats(), 0.0);
SparseVector<double> g;
bool converged = false;
LBFGSOptimizer opt(FD::NumFeats(), conf["memory_buffers"].as<unsigned>());
while(!converged) {
double cll = 0;
double dbias = 0;
g.clear();
for (int i = 0; i < training.size(); ++i) {
const double dotprod = training[i].second.dot(x) + x[0]; // x[0] is bias
double lp_false = dotprod;
double lp_true = -dotprod;
if (0 < lp_true) {
lp_true += log1p(exp(-lp_true));
lp_false = log1p(exp(lp_false));
} else {
lp_true = log1p(exp(lp_true));
lp_false += log1p(exp(-lp_false));
}
lp_true*=-1;
lp_false*=-1;
if (training[i].first) { // true label
cll -= lp_true;
g -= training[i].second * exp(lp_false);
dbias -= exp(lp_false);
} else { // false label
cll -= lp_false;
g += training[i].second * exp(lp_true);
dbias += exp(lp_true);
}
}
vg.clear();
g.init_vector(&vg);
vg[0] = dbias;
#if 1
const double sigsq = conf["sigma_squared"].as<double>();
double norm = 0;
for (int i = 1; i < x.size(); ++i) {
const double mean_i = 0.0;
const double param = (x[i] - mean_i);
norm += param * param;
vg[i] += param / sigsq;
}
const double reg = norm / (2.0 * sigsq);
#else
double reg = 0;
#endif
cll += reg;
cerr << cll << " (REG=" << reg << ")\t";
bool failed = false;
try {
opt.Optimize(cll, vg, &x);
} catch (...) {
cerr << "Exception caught, assuming convergence is close enough...\n";
failed = true;
}
if (fabs(x[0]) > MAX_BIAS) {
cerr << "Biased model learned. Are your training instances wrong?\n";
cerr << " BIAS: " << x[0] << endl;
}
converged = failed || opt.HasConverged();
}
Weights w;
if (conf.count("weights")) {
for (int i = 1; i < x.size(); ++i)
x[i] = (x[i] * psi) + old_weights.get(i) * (1.0 - psi);
}
w.InitFromVector(x);
w.WriteToFile("-");
return 0;
}
|