1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "sampler.h"
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "scorer.h"
#include "inside_outside.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011)
using namespace std;
namespace po = boost::program_options;
boost::shared_ptr<MT19937> rng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
("weights,w",po::value<vector<string> >(), "[REQD] Weights files from previous and current iterations")
("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
bool flag = false;
if (!conf->count("reference")) {
cerr << "Please specify one or more references using -r <REF.TXT>\n";
flag = true;
}
if (!conf->count("weights")) {
cerr << "Please specify one or more weights using -w <WEIGHTS.TXT>\n";
flag = true;
}
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct HypInfo {
HypInfo(const vector<WordID>& h, const SparseVector<double>& feats) : hyp(h), g_(-100.0), x(feats) {}
// lazy evaluation
double g(const SentenceScorer& scorer) const {
if (g_ == -100.0)
g_ = scorer.ScoreCandidate(hyp)->ComputeScore();
return g_;
}
vector<WordID> hyp;
mutable double g_;
public:
SparseVector<double> x;
};
struct ThresholdAlpha {
explicit ThresholdAlpha(double t = 0.05) : threshold(t) {}
double operator()(double mag) const {
if (mag < threshold) return 0.0; else return 1.0;
}
const double threshold;
};
struct TrainingInstance {
TrainingInstance(const SparseVector<double>& feats, bool positive, double diff) : x(feats), y(positive), gdiff(diff) {}
SparseVector<double> x;
#ifdef DEBUGGING_PRO
vector<WordID> a;
vector<WordID> b;
#endif
bool y;
double gdiff;
};
struct DiffOrder {
bool operator()(const TrainingInstance& a, const TrainingInstance& b) const {
return a.gdiff > b.gdiff;
}
};
template<typename Alpha>
void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const Alpha& alpha_i, bool invert_score, vector<TrainingInstance>* pv) {
vector<TrainingInstance> v;
for (unsigned i = 0; i < gamma; ++i) {
size_t a = rng->inclusive(0, J_i.size() - 1)();
size_t b = rng->inclusive(0, J_i.size() - 1)();
if (a == b) continue;
double ga = J_i[a].g(scorer);
double gb = J_i[b].g(scorer);
bool positive = ga < gb;
if (invert_score) positive = !positive;
double gdiff = fabs(ga - gb);
if (!gdiff) continue;
if (rng->next() < alpha_i(gdiff)) {
v.push_back(TrainingInstance((J_i[a].x - J_i[b].x).erase_zeros(), positive, gdiff));
#ifdef DEBUGGING_PRO
v.back().a = J_i[a].hyp;
v.back().b = J_i[b].hyp;
#endif
}
}
vector<TrainingInstance>::iterator mid = v.begin() + xi;
if (xi > v.size()) mid = v.end();
partial_sort(v.begin(), mid, v.end(), DiffOrder());
copy(v.begin(), mid, back_inserter(*pv));
#ifdef DEBUGGING_PRO
if (v.size() >= 5)
for (int i =0; i < 5; ++i) {
cerr << v[i].gdiff << " y=" << v[i].y << "\tA:" << TD::GetString(v[i].a) << "\n\tB: " << TD::GetString(v[i].b) << endl;
}
#endif
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
const string loss_function = conf["loss_function"].as<string>();
ScoreType type = ScoreTypeFromString(loss_function);
DocScorer ds(type, conf["reference"].as<vector<string> >(), conf["source"].as<string>());
cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl;
Hypergraph hg;
string last_file;
ReadFile in_read(conf["input"].as<string>());
istream &in=*in_read.stream();
const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
const unsigned gamma = conf["candidate_pairs"].as<unsigned>();
const unsigned xi = conf["best_pairs"].as<unsigned>();
vector<string> weights_files = conf["weights"].as<vector<string> >();
vector<vector<double> > weights(weights_files.size());
for (int i = 0; i < weights.size(); ++i) {
Weights w;
w.InitFromFile(weights_files[i]);
w.InitVector(&weights[i]);
}
while(in) {
vector<TrainingInstance> v;
string line;
getline(in, line);
if (line.empty()) continue;
istringstream is(line);
int sent_id;
string file;
// path-to-file (JSON) sent_id
is >> file >> sent_id;
ReadFile rf(file);
HypergraphIO::ReadFromJSON(rf.stream(), &hg);
vector<HypInfo> J_i;
int start = weights.size();
start -= 4;
if (start < 0) start = 0;
for (int i = start; i < weights.size(); ++i) {
hg.Reweight(weights[i]);
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
for (int i = 0; i < kbest_size; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(hg.nodes_.size() - 1, i);
if (!d) break;
J_i.push_back(HypInfo(d->yield, d->feature_values));
}
}
Sample(gamma, xi, J_i, *ds[sent_id], ThresholdAlpha(0.05), (type == TER), &v);
for (unsigned i = 0; i < v.size(); ++i) {
const TrainingInstance& vi = v[i];
cout << vi.y << "\t" << vi.x << endl;
cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl;
}
}
return 0;
}
|