1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#include <sstream>
#include <iostream>
#include <vector>
#include <limits>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "liblbfgs/lbfgs++.h"
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
#include "ns.h"
#include "ns_docscorer.h"
#include "candidate_set.h"
#include "risk.h"
using namespace std;
namespace po = boost::program_options;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)")
("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
bool flag = false;
if (!conf->count("reference")) {
cerr << "Please specify one or more references using -r <REF.TXT>\n";
flag = true;
}
if (!conf->count("weights")) {
cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
flag = true;
}
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
EvaluationMetric* metric = NULL;
struct RiskObjective {
explicit RiskObjective(const vector<training::CandidateSet>& tr) : training(tr) {}
double operator()(const vector<double>& x, double* g) const {
fill(g, g + x.size(), 0.0);
double obj = 0;
for (unsigned i = 0; i < training.size(); ++i) {
training::CandidateSetRisk risk(training[i], *metric);
SparseVector<double> tg;
double r = risk(x, &tg);
obj += r;
for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it)
g[it->first] += it->second;
}
cerr << (1-(obj / training.size())) << endl;
return obj;
}
const vector<training::CandidateSet>& training;
};
double LearnParameters(const vector<training::CandidateSet>& training,
const double C1,
const unsigned memory_buffers,
vector<weight_t>* px) {
RiskObjective obj(training);
LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1);
lbfgs.MinimizeFunction();
return 0;
}
// runs lines 4--15 of rampion algorithm
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const string evaluation_metric = conf["evaluation_metric"].as<string>();
metric = EvaluationMetric::Instance(evaluation_metric);
DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
double goodsign = -1;
double badsign = -goodsign;
Hypergraph hg;
string last_file;
ReadFile in_read(conf["input"].as<string>());
string kbest_repo;
if (conf.count("kbest_repository")) {
kbest_repo = conf["kbest_repository"].as<string>();
MkDirP(kbest_repo);
}
istream &in=*in_read.stream();
const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
vector<weight_t> weights;
const string weightsf = conf["weights"].as<string>();
Weights::InitFromFile(weightsf, &weights);
string line, file;
vector<training::CandidateSet> kis;
cerr << "Loading hypergraphs...\n";
while(getline(in, line)) {
istringstream is(line);
int sent_id;
kis.resize(kis.size() + 1);
training::CandidateSet& curkbest = kis.back();
string kbest_file;
if (kbest_repo.size()) {
ostringstream os;
os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
kbest_file = os.str();
if (FileExists(kbest_file))
curkbest.ReadFromFile(kbest_file);
}
is >> file >> sent_id;
ReadFile rf(file);
if (kis.size() % 5 == 0) { cerr << '.'; }
if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; }
HypergraphIO::ReadFromJSON(rf.stream(), &hg);
hg.Reweight(weights);
curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
if (kbest_file.size())
curkbest.WriteToFile(kbest_file);
}
cerr << "\nHypergraphs loaded.\n";
weights.resize(FD::NumFeats());
LearnParameters(kis, 0.0, 100, &weights);
Weights::WriteToFile("-", weights);
return 0;
}
|