summaryrefslogtreecommitdiff
path: root/klm/lm/model.cc
blob: 146fe07bcb7ba22f0678bafac51955e5864bf687 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#include "lm/model.hh"

#include "lm/blank.hh"
#include "lm/lm_exception.hh"
#include "lm/search_hashed.hh"
#include "lm/search_trie.hh"
#include "lm/read_arpa.hh"
#include "util/murmur_hash.hh"

#include <algorithm>
#include <functional>
#include <numeric>
#include <cmath>

namespace lm {
namespace ngram {

size_t hash_value(const State &state) {
  return util::MurmurHashNative(state.history_, sizeof(WordIndex) * state.valid_length_);
}

namespace detail {

template <class Search, class VocabularyT> size_t GenericModel<Search, VocabularyT>::Size(const std::vector<uint64_t> &counts, const Config &config) {
  return VocabularyT::Size(counts[0], config) + Search::Size(counts, config);
}

template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::SetupMemory(void *base, const std::vector<uint64_t> &counts, const Config &config) {
  uint8_t *start = static_cast<uint8_t*>(base);
  size_t allocated = VocabularyT::Size(counts[0], config);
  vocab_.SetupMemory(start, allocated, counts[0], config);
  start += allocated;
  start = search_.SetupMemory(start, counts, config);
  if (static_cast<std::size_t>(start - static_cast<uint8_t*>(base)) != Size(counts, config)) UTIL_THROW(FormatLoadException, "The data structures took " << (start - static_cast<uint8_t*>(base)) << " but Size says they should take " << Size(counts, config));
}

template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::GenericModel(const char *file, const Config &config) {
  LoadLM(file, config, *this);

  // g++ prints warnings unless these are fully initialized.  
  State begin_sentence = State();
  begin_sentence.valid_length_ = 1;
  begin_sentence.history_[0] = vocab_.BeginSentence();
  begin_sentence.backoff_[0] = search_.unigram.Lookup(begin_sentence.history_[0]).backoff;
  State null_context = State();
  null_context.valid_length_ = 0;
  P::Init(begin_sentence, null_context, vocab_, search_.middle.size() + 2);
}

template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromBinary(void *start, const Parameters &params, const Config &config, int fd) {
  SetupMemory(start, params.counts, config);
  vocab_.LoadedBinary(fd, config.enumerate_vocab);
  search_.unigram.LoadedBinary();
  for (typename std::vector<Middle>::iterator i = search_.middle.begin(); i != search_.middle.end(); ++i) {
    i->LoadedBinary();
  }
  search_.longest.LoadedBinary();
}

template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromARPA(const char *file, const Config &config) {
  // Backing file is the ARPA.  Steal it so we can make the backing file the mmap output if any.  
  util::FilePiece f(backing_.file.release(), file, config.messages);
  std::vector<uint64_t> counts;
  // File counts do not include pruned trigrams that extend to quadgrams etc.   These will be fixed by search_.
  ReadARPACounts(f, counts);

  if (counts.size() > kMaxOrder) UTIL_THROW(FormatLoadException, "This model has order " << counts.size() << ".  Edit lm/max_order.hh, set kMaxOrder to at least this value, and recompile.");
  if (counts.size() < 2) UTIL_THROW(FormatLoadException, "This ngram implementation assumes at least a bigram model.");
  if (config.probing_multiplier <= 1.0) UTIL_THROW(ConfigException, "probing multiplier must be > 1.0");

  std::size_t vocab_size = VocabularyT::Size(counts[0], config);
  // Setup the binary file for writing the vocab lookup table.  The search_ is responsible for growing the binary file to its needs.  
  vocab_.SetupMemory(SetupJustVocab(config, counts.size(), vocab_size, backing_), vocab_size, counts[0], config);

  if (config.write_mmap) {
    WriteWordsWrapper wrap(config.enumerate_vocab);
    vocab_.ConfigureEnumerate(&wrap, counts[0]);
    search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_);
    wrap.Write(backing_.file.get());
  } else {
    vocab_.ConfigureEnumerate(config.enumerate_vocab, counts[0]);
    search_.InitializeFromARPA(file, f, counts, config, vocab_, backing_);
  }

  // TODO: fail faster?  
  if (!vocab_.SawUnk()) {
    switch(config.unknown_missing) {
      case Config::THROW_UP:
        {
          SpecialWordMissingException e("<unk>");
          e << " and configuration was set to throw if unknown is missing";
          throw e;
        }
      case Config::COMPLAIN:
        if (config.messages) *config.messages << "Language model is missing <unk>.  Substituting probability " << config.unknown_missing_prob << "." << std::endl; 
        // There's no break;.  This is by design.  
      case Config::SILENT:
        // Default probabilities for unknown.  
        search_.unigram.Unknown().backoff = 0.0;
        search_.unigram.Unknown().prob = config.unknown_missing_prob;
        break;
    }
  }
}

template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(const State &in_state, const WordIndex new_word, State &out_state) const {
  FullScoreReturn ret = ScoreExceptBackoff(in_state.history_, in_state.history_ + in_state.valid_length_, new_word, out_state);
  if (ret.ngram_length - 1 < in_state.valid_length_) {
    ret.prob = std::accumulate(in_state.backoff_ + ret.ngram_length - 1, in_state.backoff_ + in_state.valid_length_, ret.prob);
  }
  return ret;
}

template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
  context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
  FullScoreReturn ret = ScoreExceptBackoff(context_rbegin, context_rend, new_word, out_state);

  // Add the backoff weights for n-grams of order start to (context_rend - context_rbegin).
  unsigned char start = ret.ngram_length;
  if (context_rend - context_rbegin < static_cast<std::ptrdiff_t>(start)) return ret;
  if (start <= 1) {
    ret.prob += search_.unigram.Lookup(*context_rbegin).backoff;
    start = 2;
  }
  typename Search::Node node;
  if (!search_.FastMakeNode(context_rbegin, context_rbegin + start - 1, node)) {
    return ret;
  }
  float backoff;
  // i is the order of the backoff we're looking for.
  for (const WordIndex *i = context_rbegin + start - 1; i < context_rend; ++i) {
    if (!search_.LookupMiddleNoProb(search_.middle[i - context_rbegin - 1], *i, backoff, node)) break;
    ret.prob += backoff;
  }
  return ret;
}

template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const {
  // Generate a state from context.  
  context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
  if (context_rend == context_rbegin) {
    out_state.valid_length_ = 0;
    return;
  }
  float ignored_prob;
  typename Search::Node node;
  search_.LookupUnigram(*context_rbegin, ignored_prob, out_state.backoff_[0], node);
  out_state.valid_length_ = HasExtension(out_state.backoff_[0]) ? 1 : 0;
  float *backoff_out = out_state.backoff_ + 1;
  const typename Search::Middle *mid = &*search_.middle.begin();
  for (const WordIndex *i = context_rbegin + 1; i < context_rend; ++i, ++backoff_out, ++mid) {
    if (!search_.LookupMiddleNoProb(*mid, *i, *backoff_out, node)) {
      std::copy(context_rbegin, context_rbegin + out_state.valid_length_, out_state.history_);
      return;
    }
    if (HasExtension(*backoff_out)) out_state.valid_length_ = i - context_rbegin + 1;
  }
  std::copy(context_rbegin, context_rbegin + out_state.valid_length_, out_state.history_);
}

namespace {
// Do a paraonoid copy of history, assuming new_word has already been copied
// (hence the -1).  out_state.valid_length_ could be zero so I avoided using
// std::copy.   
void CopyRemainingHistory(const WordIndex *from, State &out_state) {
  WordIndex *out = out_state.history_ + 1;
  const WordIndex *in_end = from + static_cast<ptrdiff_t>(out_state.valid_length_) - 1;
  for (const WordIndex *in = from; in < in_end; ++in, ++out) *out = *in;
}
} // namespace

/* Ugly optimized function.  Produce a score excluding backoff.  
 * The search goes in increasing order of ngram length.  
 * Context goes backward, so context_begin is the word immediately preceeding
 * new_word.  
 */
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ScoreExceptBackoff(
    const WordIndex *context_rbegin,
    const WordIndex *context_rend,
    const WordIndex new_word,
    State &out_state) const {
  FullScoreReturn ret;
  // ret.ngram_length contains the last known non-blank ngram length.  
  ret.ngram_length = 1;

  typename Search::Node node;
  float *backoff_out(out_state.backoff_);
  search_.LookupUnigram(new_word, ret.prob, *backoff_out, node);
  // This is the length of the context that should be used for continuation.  
  out_state.valid_length_ = HasExtension(*backoff_out) ? 1 : 0;
  // We'll write the word anyway since it will probably be used and does no harm being there.  
  out_state.history_[0] = new_word;
  if (context_rbegin == context_rend) return ret;
  ++backoff_out;

  // Ok now we now that the bigram contains known words.  Start by looking it up.
  const WordIndex *hist_iter = context_rbegin;
  typename std::vector<Middle>::const_iterator mid_iter = search_.middle.begin();
  for (; ; ++mid_iter, ++hist_iter, ++backoff_out) {
    if (hist_iter == context_rend) {
      // Ran out of history.  Typically no backoff, but this could be a blank.  
      CopyRemainingHistory(context_rbegin, out_state);
      // ret.prob was already set.
      return ret;
    }

    if (mid_iter == search_.middle.end()) break;

    float revert = ret.prob;
    if (!search_.LookupMiddle(*mid_iter, *hist_iter, ret.prob, *backoff_out, node)) {
      // Didn't find an ngram using hist_iter.  
      CopyRemainingHistory(context_rbegin, out_state);
      // ret.prob was already set.  
      return ret;
    }
    if (ret.prob == kBlankProb) {
      // It's a blank.  Go back to the old probability.  
      ret.prob = revert;
    } else {
      ret.ngram_length = hist_iter - context_rbegin + 2;
      if (HasExtension(*backoff_out)) {
        out_state.valid_length_ = ret.ngram_length;
      }
    }
  }

  // It passed every lookup in search_.middle.  All that's left is to check search_.longest.  
  
  if (!search_.LookupLongest(*hist_iter, ret.prob, node)) {
    // Failed to find a longest n-gram.  Fall back to the most recent non-blank.  
    CopyRemainingHistory(context_rbegin, out_state);
    // ret.prob was already set.  
    return ret;
  }
  // It's an P::Order()-gram.  
  CopyRemainingHistory(context_rbegin, out_state);
  // There is no blank in longest_.
  ret.ngram_length = P::Order();
  return ret;
}

template class GenericModel<ProbingHashedSearch, ProbingVocabulary>;
template class GenericModel<SortedHashedSearch, SortedVocabulary>;
template class GenericModel<trie::TrieSearch, SortedVocabulary>;

} // namespace detail
} // namespace ngram
} // namespace lm