summaryrefslogtreecommitdiff
path: root/gi/pf/transliterations.cc
blob: 2200715ee3b53a2a4f2d8f0eb01b61a5be3d5ee5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#include "transliterations.h"

#include <iostream>
#include <vector>

#include "boost/shared_ptr.hpp"

#include "backward.h"
#include "filelib.h"
#include "tdict.h"
#include "trule.h"
#include "filelib.h"
#include "ccrp_nt.h"
#include "m.h"
#include "reachability.h"

using namespace std;
using namespace std::tr1;

struct TruncatedConditionalLengthModel {
  TruncatedConditionalLengthModel(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) :
      plens(max_src_size+1, vector<prob_t>(max_trg_size+1, 0.0)) {
    for (unsigned i = 1; i <= max_src_size; ++i) {
      prob_t z = prob_t::Zero();
      for (unsigned j = 1; j <= max_trg_size; ++j)
        z += (plens[i][j] = prob_t(0.01 + exp(Md::log_poisson(j, i * expected_src_to_trg_ratio))));
      for (unsigned j = 1; j <= max_trg_size; ++j)
        plens[i][j] /= z;
      //for (unsigned j = 1; j <= max_trg_size; ++j)
      //  cerr << "P(trg_len=" << j << " | src_len=" << i << ") = " << plens[i][j] << endl;
    }
  }

  // return p(tlen | slen) for *chunks* not full words
  inline const prob_t& operator()(int slen, int tlen) const {
    return plens[slen][tlen];
  }

  vector<vector<prob_t> > plens;
};

struct CondBaseDist {
  CondBaseDist(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) :
    tclm(max_src_size, max_trg_size, expected_src_to_trg_ratio) {}

  prob_t operator()(const vector<WordID>& src, unsigned sf, unsigned st,
                    const vector<WordID>& trg, unsigned tf, unsigned tt) const {
    prob_t p = tclm(st - sf, tt - tf);  // target len | source length ~ TCLM(source len)
    assert(!"not impl");
    return p;
  }
  inline prob_t operator()(const vector<WordID>& src, const vector<WordID>& trg) const {
    return (*this)(src, 0, src.size(), trg, 0, trg.size());
  }
  TruncatedConditionalLengthModel tclm;
};

// represents transliteration phrase probabilities, e.g.
//   p( a l - | A l ) , p( o | A w ) , ...
struct TransliterationChunkConditionalModel {
  explicit TransliterationChunkConditionalModel(const CondBaseDist& pp0) :
      d(0.0),
      strength(1.0),
      rp0(pp0) {
  }

  void Summary() const {
    std::cerr << "Number of conditioning contexts: " << r.size() << std::endl;
    for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) {
      std::cerr << TD::GetString(it->first) << "   \t(\\alpha = " << it->second.alpha() << ") --------------------------" << std::endl;
      for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2)
        std::cerr << "   " << i2->second << '\t' << i2->first << std::endl;
    }
  }

  int DecrementRule(const TRule& rule) {
    RuleModelHash::iterator it = r.find(rule.f_);
    assert(it != r.end());    
    int count = it->second.decrement(rule);
    if (count) {
      if (it->second.num_customers() == 0) r.erase(it);
    }
    return count;
  }

  int IncrementRule(const TRule& rule) {
    RuleModelHash::iterator it = r.find(rule.f_);
    if (it == r.end()) {
      it = r.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(strength))).first;
    } 
    int count = it->second.increment(rule);
    return count;
  }

  void IncrementRules(const std::vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      IncrementRule(*rules[i]);
  }

  void DecrementRules(const std::vector<TRulePtr>& rules) {
    for (int i = 0; i < rules.size(); ++i)
      DecrementRule(*rules[i]);
  }

  prob_t RuleProbability(const TRule& rule) const {
    prob_t p;
    RuleModelHash::const_iterator it = r.find(rule.f_);
    if (it == r.end()) {
      p = rp0(rule.f_, rule.e_);
    } else {
      p = it->second.prob(rule, rp0(rule.f_, rule.e_));
    }
    return p;
  }

  double LogLikelihood(const double& dd, const double& aa) const {
    if (aa <= -dd) return -std::numeric_limits<double>::infinity();
    //double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1);
    double llh = //Md::log_beta_density(dd, 1, 1) +
                 Md::log_gamma_density(dd + aa, 1, 1);
    typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::const_iterator it;
    for (it = r.begin(); it != r.end(); ++it)
      llh += it->second.log_crp_prob(aa);
    return llh;
  }

  struct AlphaResampler {
    AlphaResampler(const TransliterationChunkConditionalModel& m) : m_(m) {}
    const TransliterationChunkConditionalModel& m_;
    double operator()(const double& proposed_strength) const {
      return m_.LogLikelihood(m_.d, proposed_strength);
    }
  };

  void ResampleHyperparameters(MT19937* rng) {
    typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::iterator it;
    //const unsigned nloop = 5;
    const unsigned niterations = 10;
    //DiscountResampler dr(*this);
    AlphaResampler ar(*this);
#if 0
    for (int iter = 0; iter < nloop; ++iter) {
      strength = slice_sampler1d(ar, strength, *rng, -d + std::numeric_limits<double>::min(),
                              std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
      double min_discount = std::numeric_limits<double>::min();
      if (strength < 0.0) min_discount -= strength;
      d = slice_sampler1d(dr, d, *rng, min_discount,
                          1.0, 0.0, niterations, 100*niterations);
    }
#endif
    strength = slice_sampler1d(ar, strength, *rng, -d,
                            std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
    std::cerr << "CTMModel(alpha=" << strength << ") = " << LogLikelihood(d, strength) << std::endl;
    for (it = r.begin(); it != r.end(); ++it) {
#if 0
      it->second.set_discount(d);
#endif
      it->second.set_alpha(strength);
    }
  }

  prob_t Likelihood() const {
    prob_t p; p.logeq(LogLikelihood(d, strength));
    return p;
  }

  const CondBaseDist& rp0;
  typedef std::tr1::unordered_map<std::vector<WordID>,
                                  CCRP_NoTable<TRule>,
                                  boost::hash<std::vector<WordID> > > RuleModelHash;
  RuleModelHash r;
  double d, strength;
};

struct GraphStructure {
  GraphStructure() : r() {}
  // leak memory - these are basically static
  const Reachability* r;
  bool IsReachable() const { return r->nodes > 0; }
};

struct ProbabilityEstimates {
  ProbabilityEstimates() : gs(), backward() {}
  explicit ProbabilityEstimates(const GraphStructure& g) :
      gs(&g), backward() {
    if (g.r->nodes > 0)
      backward = new float[g.r->nodes];
  }
  // leak memory, these are static

  // returns an estimate of the marginal probability
  double MarginalEstimate() const {
    if (!backward) return 0;
    return backward[0];
  }

  // returns an backward estimate
  double Backward(int src_covered, int trg_covered) const {
    if (!backward) return 0;
    int ind = gs->r->node_addresses[src_covered][trg_covered];
    if (ind < 0) return 0;
    return backward[ind];
  }

  prob_t estp;
  float* backward;
 private:
  const GraphStructure* gs;
};

struct TransliterationsImpl {
  TransliterationsImpl(int max_src, int max_trg, double sr, const BackwardEstimator& b) :
      cp0(max_src, max_trg, sr),
      tccm(cp0),
      be(b),
      kMAX_SRC_CHUNK(max_src),
      kMAX_TRG_CHUNK(max_trg),
      kS2T_RATIO(sr),
      tot_pairs(), tot_mem() {
  }
  const CondBaseDist cp0;
  TransliterationChunkConditionalModel tccm;
  const BackwardEstimator& be;

  void Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
    const size_t src_len = src_lets.size();
    const size_t trg_len = trg_lets.size();

    // init graph structure
    if (src_len >= graphs.size()) graphs.resize(src_len + 1);
    if (trg_len >= graphs[src_len].size()) graphs[src_len].resize(trg_len + 1);
    GraphStructure& gs = graphs[src_len][trg_len];
    if (!gs.r) {
      double rat = exp(fabs(log(trg_len / (src_len * kS2T_RATIO))));
      if (rat > 1.5 || (rat > 2.4 && src_len < 6)) {
        cerr << " ** Forbidding transliterations of size " << src_len << "," << trg_len << ": " << rat << endl;
        gs.r = new Reachability(src_len, trg_len, 0, 0);
      } else {
        gs.r = new Reachability(src_len, trg_len, kMAX_SRC_CHUNK, kMAX_TRG_CHUNK);
      }
    }

    const Reachability& r = *gs.r;

    // init backward estimates
    if (src >= ests.size()) ests.resize(src + 1);
    unordered_map<WordID, ProbabilityEstimates>::iterator it = ests[src].find(trg);
    if (it != ests[src].end()) return; // already initialized

    it = ests[src].insert(make_pair(trg, ProbabilityEstimates(gs))).first;
    ProbabilityEstimates& est = it->second;
    if (!gs.r->nodes) return;  // not derivable subject to length constraints

    be.InitializeGrid(src_lets, trg_lets, r, kS2T_RATIO, est.backward);
    cerr << TD::GetString(src_lets) << " ||| " << TD::GetString(trg_lets) << " ||| " << (est.backward[0] / trg_lets.size()) << endl;
    tot_pairs++;
    tot_mem += sizeof(float) * gs.r->nodes;
  }

  void Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
    const size_t src_len = src_lets.size();
    const size_t trg_len = trg_lets.size();
    // TODO
  }

  prob_t EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const {
    assert(src.size() < graphs.size());
    const vector<GraphStructure>& tv = graphs[src.size()];
    assert(trg.size() < tv.size());
    const GraphStructure& gs = tv[trg.size()];
    if (gs.r->nodes == 0)
      return prob_t::Zero();
    const unordered_map<WordID, ProbabilityEstimates>::const_iterator it = ests[s].find(t);
    assert(it != ests[s].end());
    return it->second.estp;
  }

  void GraphSummary() const {
    double to = 0;
    double tn = 0;
    double tt = 0;
    for (int i = 0; i < graphs.size(); ++i) {
      const vector<GraphStructure>& vt = graphs[i];
      for (int j = 0; j < vt.size(); ++j) {
        const GraphStructure& gs = vt[j];
        if (!gs.r) continue;
        tt++;
        for (int k = 0; k < i; ++k) {
          for (int l = 0; l < j; ++l) {
            size_t c = gs.r->valid_deltas[k][l].size();
            if (c) {
              tn += 1;
              to += c;
            }
          }
        }
      }
    }
    cerr << "     Average nodes = " << (tn / tt) << endl;
    cerr << "Average out-degree = " << (to / tn) << endl;
    cerr << " Unique structures = " << tt << endl;
    cerr << "      Unique pairs = " << tot_pairs << endl;
    cerr << "          BEs size = " << (tot_mem / (1024.0*1024.0)) << " MB" << endl;
  }

  const int kMAX_SRC_CHUNK;
  const int kMAX_TRG_CHUNK;
  const double kS2T_RATIO;
  unsigned tot_pairs;
  size_t tot_mem;
  vector<vector<GraphStructure> > graphs; // graphs[src_len][trg_len]
  vector<unordered_map<WordID, ProbabilityEstimates> > ests; // ests[src][trg]
};

Transliterations::Transliterations(int max_src, int max_trg, double sr, const BackwardEstimator& be) :
    pimpl_(new TransliterationsImpl(max_src, max_trg, sr, be)) {}
Transliterations::~Transliterations() { delete pimpl_; }

void Transliterations::Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
  pimpl_->Initialize(src, src_lets, trg, trg_lets);
}

prob_t Transliterations::EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const {
  return pimpl_->EstimateProbability(s, src,t, trg);
}

void Transliterations::Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
  pimpl_->Forbid(src, src_lets, trg, trg_lets);
}

void Transliterations::GraphSummary() const {
  pimpl_->GraphSummary();
}